我有一个文件,不同的值的一些概率,例如:
1 0.1
2 0.05
3 0.05
4 0.2
5 0.4
6 0.2
我想用这个分布生成随机数。是否存在处理此问题的现有模块?自己编写代码是相当简单的(构建累积密度函数,生成一个随机值[0,1]并选择相应的值),但这似乎应该是一个常见的问题,可能有人已经为它创建了一个函数/模块。
我需要这个,因为我想生成一个生日列表(它不遵循标准随机模块中的任何分布)。
我有一个文件,不同的值的一些概率,例如:
1 0.1
2 0.05
3 0.05
4 0.2
5 0.4
6 0.2
我想用这个分布生成随机数。是否存在处理此问题的现有模块?自己编写代码是相当简单的(构建累积密度函数,生成一个随机值[0,1]并选择相应的值),但这似乎应该是一个常见的问题,可能有人已经为它创建了一个函数/模块。
我需要这个,因为我想生成一个生日列表(它不遵循标准随机模块中的任何分布)。
当前回答
根据物品的重量列出一个清单:
items = [1, 2, 3, 4, 5, 6]
probabilities= [0.1, 0.05, 0.05, 0.2, 0.4, 0.2]
# if the list of probs is normalized (sum(probs) == 1), omit this part
prob = sum(probabilities) # find sum of probs, to normalize them
c = (1.0)/prob # a multiplier to make a list of normalized probs
probabilities = map(lambda x: c*x, probabilities)
print probabilities
ml = max(probabilities, key=lambda x: len(str(x)) - str(x).find('.'))
ml = len(str(ml)) - str(ml).find('.') -1
amounts = [ int(x*(10**ml)) for x in probabilities]
itemsList = list()
for i in range(0, len(items)): # iterate through original items
itemsList += items[i:i+1]*amounts[i]
# choose from itemsList randomly
print itemsList
优化可能是用最大公约数归一化,使目标列表更小。
另外,这可能会很有趣。
其他回答
使用CDF生成列表的一个优点是可以使用二分搜索。当你需要O(n)个时间和空间进行预处理时,你可以得到O(k log n)个数字。由于普通的Python列表效率很低,你可以使用数组模块。
如果你坚持空间不变,你可以做到以下几点;O(n)时间,O(1)空间。
def random_distr(l):
r = random.uniform(0, 1)
s = 0
for item, prob in l:
s += prob
if s >= r:
return item
return item # Might occur because of floating point inaccuracies
scipy.stats。Rv_discrete可能是您想要的。您可以通过values参数提供您的概率。然后,您可以使用分布对象的rvs()方法来生成随机数。
正如Eugene Pakhomov在评论中指出的那样,你也可以将p关键字参数传递给numpy.random.choice(),例如:
numpy.random.choice(numpy.arange(1, 7), p=[0.1, 0.05, 0.05, 0.2, 0.4, 0.2])
如果你使用的是Python 3.6或更高版本,你可以使用标准库中的random.choices() -请参阅Mark Dickinson的回答。
从Python 3.6开始,Python的标准库中就有了一个解决方案,即random.choices。
示例用法:让我们建立一个与OP问题中匹配的总体和权重:
>>> from random import choices
>>> population = [1, 2, 3, 4, 5, 6]
>>> weights = [0.1, 0.05, 0.05, 0.2, 0.4, 0.2]
现在choices(population, weights)生成一个样本,包含在一个长度为1的列表中:
>>> choices(population, weights)
[4]
可选的仅关键字参数k允许一次请求多个示例。这很有价值,因为有些准备工作是随机的。在生成样本之前,每次调用choice函数都要做的事情;通过一次生成多个样本,我们只需要做一次准备工作。这里我们生成一百万个样本,并使用集合。计数器来检查我们得到的分布是否与我们给出的权重大致匹配。
>>> million_samples = choices(population, weights, k=10**6)
>>> from collections import Counter
>>> Counter(million_samples)
Counter({5: 399616, 6: 200387, 4: 200117, 1: 99636, 3: 50219, 2: 50025})
from __future__ import division
import random
from collections import Counter
def num_gen(num_probs):
# calculate minimum probability to normalize
min_prob = min(prob for num, prob in num_probs)
lst = []
for num, prob in num_probs:
# keep appending num to lst, proportional to its probability in the distribution
for _ in range(int(prob/min_prob)):
lst.append(num)
# all elems in lst occur proportional to their distribution probablities
while True:
# pick a random index from lst
ind = random.randint(0, len(lst)-1)
yield lst[ind]
验证:
gen = num_gen([(1, 0.1),
(2, 0.05),
(3, 0.05),
(4, 0.2),
(5, 0.4),
(6, 0.2)])
lst = []
times = 10000
for _ in range(times):
lst.append(next(gen))
# Verify the created distribution:
for item, count in Counter(lst).iteritems():
print '%d has %f probability' % (item, count/times)
1 has 0.099737 probability
2 has 0.050022 probability
3 has 0.049996 probability
4 has 0.200154 probability
5 has 0.399791 probability
6 has 0.200300 probability
根据物品的重量列出一个清单:
items = [1, 2, 3, 4, 5, 6]
probabilities= [0.1, 0.05, 0.05, 0.2, 0.4, 0.2]
# if the list of probs is normalized (sum(probs) == 1), omit this part
prob = sum(probabilities) # find sum of probs, to normalize them
c = (1.0)/prob # a multiplier to make a list of normalized probs
probabilities = map(lambda x: c*x, probabilities)
print probabilities
ml = max(probabilities, key=lambda x: len(str(x)) - str(x).find('.'))
ml = len(str(ml)) - str(ml).find('.') -1
amounts = [ int(x*(10**ml)) for x in probabilities]
itemsList = list()
for i in range(0, len(items)): # iterate through original items
itemsList += items[i:i+1]*amounts[i]
# choose from itemsList randomly
print itemsList
优化可能是用最大公约数归一化,使目标列表更小。
另外,这可能会很有趣。