我有一个文件,不同的值的一些概率,例如:
1 0.1
2 0.05
3 0.05
4 0.2
5 0.4
6 0.2
我想用这个分布生成随机数。是否存在处理此问题的现有模块?自己编写代码是相当简单的(构建累积密度函数,生成一个随机值[0,1]并选择相应的值),但这似乎应该是一个常见的问题,可能有人已经为它创建了一个函数/模块。
我需要这个,因为我想生成一个生日列表(它不遵循标准随机模块中的任何分布)。
我有一个文件,不同的值的一些概率,例如:
1 0.1
2 0.05
3 0.05
4 0.2
5 0.4
6 0.2
我想用这个分布生成随机数。是否存在处理此问题的现有模块?自己编写代码是相当简单的(构建累积密度函数,生成一个随机值[0,1]并选择相应的值),但这似乎应该是一个常见的问题,可能有人已经为它创建了一个函数/模块。
我需要这个,因为我想生成一个生日列表(它不遵循标准随机模块中的任何分布)。
当前回答
from __future__ import division
import random
from collections import Counter
def num_gen(num_probs):
# calculate minimum probability to normalize
min_prob = min(prob for num, prob in num_probs)
lst = []
for num, prob in num_probs:
# keep appending num to lst, proportional to its probability in the distribution
for _ in range(int(prob/min_prob)):
lst.append(num)
# all elems in lst occur proportional to their distribution probablities
while True:
# pick a random index from lst
ind = random.randint(0, len(lst)-1)
yield lst[ind]
验证:
gen = num_gen([(1, 0.1),
(2, 0.05),
(3, 0.05),
(4, 0.2),
(5, 0.4),
(6, 0.2)])
lst = []
times = 10000
for _ in range(times):
lst.append(next(gen))
# Verify the created distribution:
for item, count in Counter(lst).iteritems():
print '%d has %f probability' % (item, count/times)
1 has 0.099737 probability
2 has 0.050022 probability
3 has 0.049996 probability
4 has 0.200154 probability
5 has 0.399791 probability
6 has 0.200300 probability
其他回答
你可能想看看NumPy随机抽样分布
另一个答案,可能更快:)
distribution = [(1, 0.2), (2, 0.3), (3, 0.5)]
# init distribution
dlist = []
sumchance = 0
for value, chance in distribution:
sumchance += chance
dlist.append((value, sumchance))
assert sumchance == 1.0 # not good assert because of float equality
# get random value
r = random.random()
# for small distributions use lineair search
if len(distribution) < 64: # don't know exact speed limit
for value, sumchance in dlist:
if r < sumchance:
return value
else:
# else (not implemented) binary search algorithm
使用CDF生成列表的一个优点是可以使用二分搜索。当你需要O(n)个时间和空间进行预处理时,你可以得到O(k log n)个数字。由于普通的Python列表效率很低,你可以使用数组模块。
如果你坚持空间不变,你可以做到以下几点;O(n)时间,O(1)空间。
def random_distr(l):
r = random.uniform(0, 1)
s = 0
for item, prob in l:
s += prob
if s >= r:
return item
return item # Might occur because of floating point inaccuracies
from __future__ import division
import random
from collections import Counter
def num_gen(num_probs):
# calculate minimum probability to normalize
min_prob = min(prob for num, prob in num_probs)
lst = []
for num, prob in num_probs:
# keep appending num to lst, proportional to its probability in the distribution
for _ in range(int(prob/min_prob)):
lst.append(num)
# all elems in lst occur proportional to their distribution probablities
while True:
# pick a random index from lst
ind = random.randint(0, len(lst)-1)
yield lst[ind]
验证:
gen = num_gen([(1, 0.1),
(2, 0.05),
(3, 0.05),
(4, 0.2),
(5, 0.4),
(6, 0.2)])
lst = []
times = 10000
for _ in range(times):
lst.append(next(gen))
# Verify the created distribution:
for item, count in Counter(lst).iteritems():
print '%d has %f probability' % (item, count/times)
1 has 0.099737 probability
2 has 0.050022 probability
3 has 0.049996 probability
4 has 0.200154 probability
5 has 0.399791 probability
6 has 0.200300 probability
(好吧,我知道你想要薄膜包装,但也许这些自制的解决方案对你来说不够简洁。: -)
pdf = [(1, 0.1), (2, 0.05), (3, 0.05), (4, 0.2), (5, 0.4), (6, 0.2)]
cdf = [(i, sum(p for j,p in pdf if j < i)) for i,_ in pdf]
R = max(i for r in [random.random()] for i,c in cdf if c <= r)
我伪确认,这是通过目测这个表达式的输出:
sorted(max(i for r in [random.random()] for i,c in cdf if c <= r)
for _ in range(1000))