如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)


当前回答

这个函数检测Circle和Rectangle之间的碰撞(交集)。他的回答类似于e.James的方法,但这个方法检测矩形的所有角(不仅仅是右角)的碰撞。

注意:

aRect.origin.x和aRect.origin.y是矩形左下角的坐标!

aCircle。x和圆。y为圆心坐标!

static inline BOOL RectIntersectsCircle(CGRect aRect, Circle aCircle) {

    float testX = aCircle.x;
    float testY = aCircle.y;

    if (testX < aRect.origin.x)
        testX = aRect.origin.x;
    if (testX > (aRect.origin.x + aRect.size.width))
        testX = (aRect.origin.x + aRect.size.width);
    if (testY < aRect.origin.y)
        testY = aRect.origin.y;
    if (testY > (aRect.origin.y + aRect.size.height))
        testY = (aRect.origin.y + aRect.size.height);

    return ((aCircle.x - testX) * (aCircle.x - testX) + (aCircle.y - testY) * (aCircle.y - testY)) < aCircle.radius * aCircle.radius;
}

其他回答

下面是我的C代码,用于解决球体和非轴对齐的盒子之间的碰撞。它依赖于我自己的几个库例程,但它可能对某些人有用。我在游戏中使用了它,效果非常好。

float physicsProcessCollisionBetweenSelfAndActorRect(SPhysics *self, SPhysics *actor)
{
    float diff = 99999;

    SVector relative_position_of_circle = getDifference2DBetweenVectors(&self->worldPosition, &actor->worldPosition);
    rotateVector2DBy(&relative_position_of_circle, -actor->axis.angleZ); // This aligns the coord system so the rect becomes an AABB

    float x_clamped_within_rectangle = relative_position_of_circle.x;
    float y_clamped_within_rectangle = relative_position_of_circle.y;
    LIMIT(x_clamped_within_rectangle, actor->physicsRect.l, actor->physicsRect.r);
    LIMIT(y_clamped_within_rectangle, actor->physicsRect.b, actor->physicsRect.t);

    // Calculate the distance between the circle's center and this closest point
    float distance_to_nearest_edge_x = relative_position_of_circle.x - x_clamped_within_rectangle;
    float distance_to_nearest_edge_y = relative_position_of_circle.y - y_clamped_within_rectangle;

    // If the distance is less than the circle's radius, an intersection occurs
    float distance_sq_x = SQUARE(distance_to_nearest_edge_x);
    float distance_sq_y = SQUARE(distance_to_nearest_edge_y);
    float radius_sq = SQUARE(self->physicsRadius);
    if(distance_sq_x + distance_sq_y < radius_sq)   
    {
        float half_rect_w = (actor->physicsRect.r - actor->physicsRect.l) * 0.5f;
        float half_rect_h = (actor->physicsRect.t - actor->physicsRect.b) * 0.5f;

        CREATE_VECTOR(push_vector);         

        // If we're at one of the corners of this object, treat this as a circular/circular collision
        if(fabs(relative_position_of_circle.x) > half_rect_w && fabs(relative_position_of_circle.y) > half_rect_h)
        {
            SVector edges;
            if(relative_position_of_circle.x > 0) edges.x = half_rect_w; else edges.x = -half_rect_w;
            if(relative_position_of_circle.y > 0) edges.y = half_rect_h; else edges.y = -half_rect_h;   

            push_vector = relative_position_of_circle;
            moveVectorByInverseVector2D(&push_vector, &edges);

            // We now have the vector from the corner of the rect to the point.
            float delta_length = getVector2DMagnitude(&push_vector);
            float diff = self->physicsRadius - delta_length; // Find out how far away we are from our ideal distance

            // Normalise the vector
            push_vector.x /= delta_length;
            push_vector.y /= delta_length;
            scaleVector2DBy(&push_vector, diff); // Now multiply it by the difference
            push_vector.z = 0;
        }
        else // Nope - just bouncing against one of the edges
        {
            if(relative_position_of_circle.x > 0) // Ball is to the right
                push_vector.x = (half_rect_w + self->physicsRadius) - relative_position_of_circle.x;
            else
                push_vector.x = -((half_rect_w + self->physicsRadius) + relative_position_of_circle.x);

            if(relative_position_of_circle.y > 0) // Ball is above
                push_vector.y = (half_rect_h + self->physicsRadius) - relative_position_of_circle.y;
            else
                push_vector.y = -((half_rect_h + self->physicsRadius) + relative_position_of_circle.y);

            if(fabs(push_vector.x) < fabs(push_vector.y))
                push_vector.y = 0;
            else
                push_vector.x = 0;
        }

        diff = 0; // Cheat, since we don't do anything with the value anyway
        rotateVector2DBy(&push_vector, actor->axis.angleZ);
        SVector *from = &self->worldPosition;       
        moveVectorBy2D(from, push_vector.x, push_vector.y);
    }   
    return diff;
}

以下是我的做法:

bool intersects(CircleType circle, RectType rect)
{
    circleDistance.x = abs(circle.x - rect.x);
    circleDistance.y = abs(circle.y - rect.y);

    if (circleDistance.x > (rect.width/2 + circle.r)) { return false; }
    if (circleDistance.y > (rect.height/2 + circle.r)) { return false; }

    if (circleDistance.x <= (rect.width/2)) { return true; } 
    if (circleDistance.y <= (rect.height/2)) { return true; }

    cornerDistance_sq = (circleDistance.x - rect.width/2)^2 +
                         (circleDistance.y - rect.height/2)^2;

    return (cornerDistance_sq <= (circle.r^2));
}

下面是它的工作原理:

The first pair of lines calculate the absolute values of the x and y difference between the center of the circle and the center of the rectangle. This collapses the four quadrants down into one, so that the calculations do not have to be done four times. The image shows the area in which the center of the circle must now lie. Note that only the single quadrant is shown. The rectangle is the grey area, and the red border outlines the critical area which is exactly one radius away from the edges of the rectangle. The center of the circle has to be within this red border for the intersection to occur. The second pair of lines eliminate the easy cases where the circle is far enough away from the rectangle (in either direction) that no intersection is possible. This corresponds to the green area in the image. The third pair of lines handle the easy cases where the circle is close enough to the rectangle (in either direction) that an intersection is guaranteed. This corresponds to the orange and grey sections in the image. Note that this step must be done after step 2 for the logic to make sense. The remaining lines calculate the difficult case where the circle may intersect the corner of the rectangle. To solve, compute the distance from the center of the circle and the corner, and then verify that the distance is not more than the radius of the circle. This calculation returns false for all circles whose center is within the red shaded area and returns true for all circles whose center is within the white shaded area.

这个函数检测Circle和Rectangle之间的碰撞(交集)。他的回答类似于e.James的方法,但这个方法检测矩形的所有角(不仅仅是右角)的碰撞。

注意:

aRect.origin.x和aRect.origin.y是矩形左下角的坐标!

aCircle。x和圆。y为圆心坐标!

static inline BOOL RectIntersectsCircle(CGRect aRect, Circle aCircle) {

    float testX = aCircle.x;
    float testY = aCircle.y;

    if (testX < aRect.origin.x)
        testX = aRect.origin.x;
    if (testX > (aRect.origin.x + aRect.size.width))
        testX = (aRect.origin.x + aRect.size.width);
    if (testY < aRect.origin.y)
        testY = aRect.origin.y;
    if (testY > (aRect.origin.y + aRect.size.height))
        testY = (aRect.origin.y + aRect.size.height);

    return ((aCircle.x - testX) * (aCircle.x - testX) + (aCircle.y - testY) * (aCircle.y - testY)) < aCircle.radius * aCircle.radius;
}

这里有另一个解决方案,实现起来非常简单(也非常快)。它将捕获所有的交点,包括当球体完全进入矩形时。

// clamp(value, min, max) - limits value to the range min..max

// Find the closest point to the circle within the rectangle
float closestX = clamp(circle.X, rectangle.Left, rectangle.Right);
float closestY = clamp(circle.Y, rectangle.Top, rectangle.Bottom);

// Calculate the distance between the circle's center and this closest point
float distanceX = circle.X - closestX;
float distanceY = circle.Y - closestY;

// If the distance is less than the circle's radius, an intersection occurs
float distanceSquared = (distanceX * distanceX) + (distanceY * distanceY);
return distanceSquared < (circle.Radius * circle.Radius);

任何像样的数学库都可以将其缩短为3或4行。

def colision(rect, circle):
dx = rect.x - circle.x
dy = rect.y - circle.y
distance = (dy**2 + dx**2)**0.5
angle_to = (rect.angle + math.atan2(dx, dy)/3.1415*180.0) % 360
if((angle_to>135 and angle_to<225) or (angle_to>0 and angle_to<45) or (angle_to>315 and angle_to<360)):
    if distance <= circle.rad/2.+((rect.height/2.0)*(1.+0.5*abs(math.sin(angle_to*math.pi/180.)))):
        return True
else:
    if distance <= circle.rad/2.+((rect.width/2.0)*(1.+0.5*abs(math.cos(angle_to*math.pi/180.)))):
        return True
return False