如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)


当前回答

有效,一周前才发现,现在才开始测试。

double theta = Math.atan2(cir.getX()-sqr.getX()*1.0,
                          cir.getY()-sqr.getY()*1.0); //radians of the angle
double dBox; //distance from box to edge of box in direction of the circle

if((theta >  Math.PI/4 && theta <  3*Math.PI / 4) ||
   (theta < -Math.PI/4 && theta > -3*Math.PI / 4)) {
    dBox = sqr.getS() / (2*Math.sin(theta));
} else {
    dBox = sqr.getS() / (2*Math.cos(theta));
}
boolean touching = (Math.abs(dBox) >=
                    Math.sqrt(Math.pow(sqr.getX()-cir.getX(), 2) +
                              Math.pow(sqr.getY()-cir.getY(), 2)));

其他回答

假设你有矩形的四条边,检查从这些边到圆心的距离,如果小于半径,那么这些形状是相交的。

if sqrt((rectangleRight.x - circleCenter.x)^2 +
        (rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleRight.x - circleCenter.x)^2 +
        (rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleLeft.x - circleCenter.x)^2 +
        (rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleLeft.x - circleCenter.x)^2 +
        (rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect

为了可视化,拿你的键盘的numpad。如果键“5”代表你的矩形,那么所有的键1-9代表空间的9个象限除以构成矩形的线(5是里面的线)。

1)如果圆的中心在象限5(即在矩形内),则两个形状相交。

这里有两种可能的情况: a)圆与矩形的两条或多条相邻边相交。 b)圆与矩形的一条边相交。

第一种情况很简单。如果圆与矩形的两条相邻边相交,则它必须包含连接这两条边的角。(或者说它的中心在象限5,我们已经讲过了。还要注意,圆只与矩形的两条相对边相交的情况也被覆盖了。)

2)如果矩形的任意角A、B、C、D在圆内,则这两个形状相交。

第二种情况比较棘手。我们应该注意到,只有当圆的中心位于2、4、6或8象限中的一个象限时,才会发生这种情况。(事实上,如果中心在1、3、7、8象限中的任何一个象限上,则相应的角将是离它最近的点。)

现在我们有了圆的中心在一个“边”象限内的情况,它只与相应的边相交。那么,边缘上最接近圆中心的点必须在圆内。

3)对于每条直线AB, BC, CD, DA,构造经过圆中心p的垂直线p(AB, p), p(BC, p), p(CD, p), p(DA, p),对于每条垂直线,如果与原边的交点在圆内,则两个图形相交。

最后一步有一个捷径。如果圆的圆心在象限8,边AB是上边,交点的y坐标是A和B, x坐标是P。

你可以构造四条线的交点并检查它们是否在相应的边上,或者找出P在哪个象限并检查相应的交点。两者都应该化简为相同的布尔方程。要注意的是,上面的步骤2并没有排除P位于“角落”象限之一;它只是在寻找一个十字路口。

编辑:事实证明,我忽略了一个简单的事实,即#2是#3的子情况。毕竟,角也是边缘上的点。请看下面@ShreevatsaR的回答,你会得到很好的解释。与此同时,忘记上面的第二条,除非你想要一个快速但冗余的检查。

这里有另一个解决方案,实现起来非常简单(也非常快)。它将捕获所有的交点,包括当球体完全进入矩形时。

// clamp(value, min, max) - limits value to the range min..max

// Find the closest point to the circle within the rectangle
float closestX = clamp(circle.X, rectangle.Left, rectangle.Right);
float closestY = clamp(circle.Y, rectangle.Top, rectangle.Bottom);

// Calculate the distance between the circle's center and this closest point
float distanceX = circle.X - closestX;
float distanceY = circle.Y - closestY;

// If the distance is less than the circle's radius, an intersection occurs
float distanceSquared = (distanceX * distanceX) + (distanceY * distanceY);
return distanceSquared < (circle.Radius * circle.Radius);

任何像样的数学库都可以将其缩短为3或4行。

预检查一个完全封装矩形的圆是否与矩形发生碰撞。 检查圆内的矩形角。 对于每条边,看看是否有一条线与圆相交。将中心点C投影到直线AB上,得到点d。如果CD的长度小于半径,则发生了碰撞。

    projectionScalar=dot(AC,AB)/(mag(AC)*mag(AB));
    if(projectionScalar>=0 && projectionScalar<=1) {
        D=A+AB*projectionScalar;
        CD=D-C;
        if(mag(CD)<circle.radius){
            // there was a collision
        }
    }

实际上,这要简单得多。你只需要两样东西。

首先,你需要找出从圆中心到矩形每条直线的四个正交距离。如果任意三个圆的半径大于矩形的半径,那么圆就不会与矩形相交。

其次,你需要找到圆中心和矩形中心之间的距离,那么你的圆不会在矩形内部如果距离大于矩形对角线长度的一半。

好运!