如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)


当前回答

有效,一周前才发现,现在才开始测试。

double theta = Math.atan2(cir.getX()-sqr.getX()*1.0,
                          cir.getY()-sqr.getY()*1.0); //radians of the angle
double dBox; //distance from box to edge of box in direction of the circle

if((theta >  Math.PI/4 && theta <  3*Math.PI / 4) ||
   (theta < -Math.PI/4 && theta > -3*Math.PI / 4)) {
    dBox = sqr.getS() / (2*Math.sin(theta));
} else {
    dBox = sqr.getS() / (2*Math.cos(theta));
}
boolean touching = (Math.abs(dBox) >=
                    Math.sqrt(Math.pow(sqr.getX()-cir.getX(), 2) +
                              Math.pow(sqr.getY()-cir.getY(), 2)));

其他回答

为我工作(只工作时,矩形的角度是180)

function intersects(circle, rect) {
  let left = rect.x + rect.width > circle.x - circle.radius;
  let right = rect.x < circle.x + circle.radius;
  let top = rect.y < circle.y + circle.radius;
  let bottom = rect.y + rect.height > circle.y - circle.radius;
  return left && right && bottom && top;
}

这个函数检测Circle和Rectangle之间的碰撞(交集)。他的回答类似于e.James的方法,但这个方法检测矩形的所有角(不仅仅是右角)的碰撞。

注意:

aRect.origin.x和aRect.origin.y是矩形左下角的坐标!

aCircle。x和圆。y为圆心坐标!

static inline BOOL RectIntersectsCircle(CGRect aRect, Circle aCircle) {

    float testX = aCircle.x;
    float testY = aCircle.y;

    if (testX < aRect.origin.x)
        testX = aRect.origin.x;
    if (testX > (aRect.origin.x + aRect.size.width))
        testX = (aRect.origin.x + aRect.size.width);
    if (testY < aRect.origin.y)
        testY = aRect.origin.y;
    if (testY > (aRect.origin.y + aRect.size.height))
        testY = (aRect.origin.y + aRect.size.height);

    return ((aCircle.x - testX) * (aCircle.x - testX) + (aCircle.y - testY) * (aCircle.y - testY)) < aCircle.radius * aCircle.radius;
}

我的方法:

从OBB /矩形上/中的圆计算closest_point (最近点将位于边缘/角落或内部) 计算从closest_point到圆心的squared_distance (距离的平方避免了平方根) 返回squared_distance <=圆半径的平方

对于那些需要用SQL在地理坐标中计算圆/矩形碰撞的人, 这是我在oracle 11中实现的e.James建议算法。

在输入中,它需要圆坐标,圆半径km和矩形的两个顶点坐标:

CREATE OR REPLACE FUNCTION "DETECT_CIRC_RECT_COLLISION"
(
    circleCenterLat     IN NUMBER,      -- circle Center Latitude
    circleCenterLon     IN NUMBER,      -- circle Center Longitude
    circleRadius        IN NUMBER,      -- circle Radius in KM
    rectSWLat           IN NUMBER,      -- rectangle South West Latitude
    rectSWLon           IN NUMBER,      -- rectangle South West Longitude
    rectNELat           IN NUMBER,      -- rectangle North Est Latitude
    rectNELon           IN NUMBER       -- rectangle North Est Longitude
)
RETURN NUMBER
AS
    -- converts km to degrees (use 69 if miles)
    kmToDegreeConst     NUMBER := 111.045;

    -- Remaining rectangle vertices 
    rectNWLat   NUMBER;
    rectNWLon   NUMBER;
    rectSELat   NUMBER;
    rectSELon   NUMBER;

    rectHeight  NUMBER;
    rectWIdth   NUMBER;

    circleDistanceLat   NUMBER;
    circleDistanceLon   NUMBER;
    cornerDistanceSQ    NUMBER;

BEGIN
    -- Initialization of remaining rectangle vertices  
    rectNWLat := rectNELat;
    rectNWLon := rectSWLon;
    rectSELat := rectSWLat;
    rectSELon := rectNELon;

    -- Rectangle sides length calculation
    rectHeight := calc_distance(rectSWLat, rectSWLon, rectNWLat, rectNWLon);
    rectWidth := calc_distance(rectSWLat, rectSWLon, rectSELat, rectSELon);

    circleDistanceLat := abs( (circleCenterLat * kmToDegreeConst) - ((rectSWLat * kmToDegreeConst) + (rectHeight/2)) );
    circleDistanceLon := abs( (circleCenterLon * kmToDegreeConst) - ((rectSWLon * kmToDegreeConst) + (rectWidth/2)) );

    IF circleDistanceLon > ((rectWidth/2) + circleRadius) THEN
        RETURN -1;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    IF circleDistanceLat > ((rectHeight/2) + circleRadius) THEN
        RETURN -1;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    IF circleDistanceLon <= (rectWidth/2) THEN
        RETURN 0;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    IF circleDistanceLat <= (rectHeight/2) THEN
        RETURN 0;   --  -1 => NO Collision ; 0 => Collision Detected
    END IF;


    cornerDistanceSQ := POWER(circleDistanceLon - (rectWidth/2), 2) + POWER(circleDistanceLat - (rectHeight/2), 2);

    IF cornerDistanceSQ <=  POWER(circleRadius, 2) THEN
        RETURN 0;  --  -1 => NO Collision ; 0 => Collision Detected
    ELSE
        RETURN -1;  --  -1 => NO Collision ; 0 => Collision Detected
    END IF;

    RETURN -1;  --  -1 => NO Collision ; 0 => Collision Detected
END;    

这是最快的解决方案:

public static boolean intersect(Rectangle r, Circle c)
{
    float cx = Math.abs(c.x - r.x - r.halfWidth);
    float xDist = r.halfWidth + c.radius;
    if (cx > xDist)
        return false;
    float cy = Math.abs(c.y - r.y - r.halfHeight);
    float yDist = r.halfHeight + c.radius;
    if (cy > yDist)
        return false;
    if (cx <= r.halfWidth || cy <= r.halfHeight)
        return true;
    float xCornerDist = cx - r.halfWidth;
    float yCornerDist = cy - r.halfHeight;
    float xCornerDistSq = xCornerDist * xCornerDist;
    float yCornerDistSq = yCornerDist * yCornerDist;
    float maxCornerDistSq = c.radius * c.radius;
    return xCornerDistSq + yCornerDistSq <= maxCornerDistSq;
}

注意执行顺序,一半的宽度/高度是预先计算好的。此外,平方是“手动”完成的,以节省一些时钟周期。