如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)
当前回答
球面和矩形相交于IIF 圆心和矩形的一个顶点之间的距离小于球体的半径 或 圆心与矩形的一条边之间的距离小于球面的半径([点线距离]) 或 圆的中心在矩形的内部 一点上距离:
P1 = [x1,y1] P2 = [x2,y2] Distance = sqrt(abs(x1 - x2)+abs(y1-y2))
点线路距离:
L1 = [x1,y1],L2 = [x2,y2] (two points of your line, ie the vertex points) P1 = [px,py] some point Distance d = abs( (x2-x1)(y1-py)-(x1-px)(y2-y1) ) / Distance(L1,L2)
矩形内圆中心: 采用分离轴的方法:如果存在一个投影到一条直线上,将矩形与点分开,它们就不相交
您将点投影在平行于矩形边的直线上,然后可以很容易地确定它们是否相交。如果它们不在所有4个投影上相交,它们(点和矩形)就不能相交。
你只需要内积(x= [x1,x2],y = [y1,y2],x *y = x1*y1 + x2*y2)
你的测试应该是这样的:
//rectangle edges: TL (top left), TR (top right), BL (bottom left), BR (bottom right) //point to test: POI seperated = false for egde in { {TL,TR}, {BL,BR}, {TL,BL},{TR-BR} }: // the edges D = edge[0] - edge[1] innerProd = D * POI Interval_min = min(D*edge[0],D*edge[1]) Interval_max = max(D*edge[0],D*edge[1]) if not ( Interval_min ≤ innerProd ≤ Interval_max ) seperated = true break // end for loop end if end for if (seperated is true) return "no intersection" else return "intersection" end if
它没有假设一个轴对齐的矩形,并且很容易扩展用于测试凸集之间的交集。
其他回答
这是最快的解决方案:
public static boolean intersect(Rectangle r, Circle c)
{
float cx = Math.abs(c.x - r.x - r.halfWidth);
float xDist = r.halfWidth + c.radius;
if (cx > xDist)
return false;
float cy = Math.abs(c.y - r.y - r.halfHeight);
float yDist = r.halfHeight + c.radius;
if (cy > yDist)
return false;
if (cx <= r.halfWidth || cy <= r.halfHeight)
return true;
float xCornerDist = cx - r.halfWidth;
float yCornerDist = cy - r.halfHeight;
float xCornerDistSq = xCornerDist * xCornerDist;
float yCornerDistSq = yCornerDist * yCornerDist;
float maxCornerDistSq = c.radius * c.radius;
return xCornerDistSq + yCornerDistSq <= maxCornerDistSq;
}
注意执行顺序,一半的宽度/高度是预先计算好的。此外,平方是“手动”完成的,以节省一些时钟周期。
有一种非常简单的方法来做到这一点,你必须在x和y上夹住一个点,但在正方形内部,当圆心在一个垂直轴上的两个正方形边界点之间时,你需要将这些坐标夹到平行轴上,只是要确保夹住的坐标不超过正方形的限制。 然后只需得到圆心与夹紧坐标之间的距离,并检查距离是否小于圆的半径。
以下是我是如何做到的(前4个点是方坐标,其余是圆点):
bool DoesCircleImpactBox(float x, float y, float x1, float y1, float xc, float yc, float radius){
float ClampedX=0;
float ClampedY=0;
if(xc>=x and xc<=x1){
ClampedX=xc;
}
if(yc>=y and yc<=y1){
ClampedY=yc;
}
radius = radius+1;
if(xc<x) ClampedX=x;
if(xc>x1) ClampedX=x1-1;
if(yc<y) ClampedY=y;
if(yc>y1) ClampedY=y1-1;
float XDif=ClampedX-xc;
XDif=XDif*XDif;
float YDif=ClampedY-yc;
YDif=YDif*YDif;
if(XDif+YDif<=radius*radius) return true;
return false;
}
实际上,这要简单得多。你只需要两样东西。
首先,你需要找出从圆中心到矩形每条直线的四个正交距离。如果任意三个圆的半径大于矩形的半径,那么圆就不会与矩形相交。
其次,你需要找到圆中心和矩形中心之间的距离,那么你的圆不会在矩形内部如果距离大于矩形对角线长度的一半。
好运!
球面和矩形相交于IIF 圆心和矩形的一个顶点之间的距离小于球体的半径 或 圆心与矩形的一条边之间的距离小于球面的半径([点线距离]) 或 圆的中心在矩形的内部 一点上距离:
P1 = [x1,y1] P2 = [x2,y2] Distance = sqrt(abs(x1 - x2)+abs(y1-y2))
点线路距离:
L1 = [x1,y1],L2 = [x2,y2] (two points of your line, ie the vertex points) P1 = [px,py] some point Distance d = abs( (x2-x1)(y1-py)-(x1-px)(y2-y1) ) / Distance(L1,L2)
矩形内圆中心: 采用分离轴的方法:如果存在一个投影到一条直线上,将矩形与点分开,它们就不相交
您将点投影在平行于矩形边的直线上,然后可以很容易地确定它们是否相交。如果它们不在所有4个投影上相交,它们(点和矩形)就不能相交。
你只需要内积(x= [x1,x2],y = [y1,y2],x *y = x1*y1 + x2*y2)
你的测试应该是这样的:
//rectangle edges: TL (top left), TR (top right), BL (bottom left), BR (bottom right) //point to test: POI seperated = false for egde in { {TL,TR}, {BL,BR}, {TL,BL},{TR-BR} }: // the edges D = edge[0] - edge[1] innerProd = D * POI Interval_min = min(D*edge[0],D*edge[1]) Interval_max = max(D*edge[0],D*edge[1]) if not ( Interval_min ≤ innerProd ≤ Interval_max ) seperated = true break // end for loop end if end for if (seperated is true) return "no intersection" else return "intersection" end if
它没有假设一个轴对齐的矩形,并且很容易扩展用于测试凸集之间的交集。
有效,一周前才发现,现在才开始测试。
double theta = Math.atan2(cir.getX()-sqr.getX()*1.0,
cir.getY()-sqr.getY()*1.0); //radians of the angle
double dBox; //distance from box to edge of box in direction of the circle
if((theta > Math.PI/4 && theta < 3*Math.PI / 4) ||
(theta < -Math.PI/4 && theta > -3*Math.PI / 4)) {
dBox = sqr.getS() / (2*Math.sin(theta));
} else {
dBox = sqr.getS() / (2*Math.cos(theta));
}
boolean touching = (Math.abs(dBox) >=
Math.sqrt(Math.pow(sqr.getX()-cir.getX(), 2) +
Math.pow(sqr.getY()-cir.getY(), 2)));