如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)
当前回答
这是最快的解决方案:
public static boolean intersect(Rectangle r, Circle c)
{
float cx = Math.abs(c.x - r.x - r.halfWidth);
float xDist = r.halfWidth + c.radius;
if (cx > xDist)
return false;
float cy = Math.abs(c.y - r.y - r.halfHeight);
float yDist = r.halfHeight + c.radius;
if (cy > yDist)
return false;
if (cx <= r.halfWidth || cy <= r.halfHeight)
return true;
float xCornerDist = cx - r.halfWidth;
float yCornerDist = cy - r.halfHeight;
float xCornerDistSq = xCornerDist * xCornerDist;
float yCornerDistSq = yCornerDist * yCornerDist;
float maxCornerDistSq = c.radius * c.radius;
return xCornerDistSq + yCornerDistSq <= maxCornerDistSq;
}
注意执行顺序,一半的宽度/高度是预先计算好的。此外,平方是“手动”完成的,以节省一些时钟周期。
其他回答
对于那些需要用SQL在地理坐标中计算圆/矩形碰撞的人, 这是我在oracle 11中实现的e.James建议算法。
在输入中,它需要圆坐标,圆半径km和矩形的两个顶点坐标:
CREATE OR REPLACE FUNCTION "DETECT_CIRC_RECT_COLLISION"
(
circleCenterLat IN NUMBER, -- circle Center Latitude
circleCenterLon IN NUMBER, -- circle Center Longitude
circleRadius IN NUMBER, -- circle Radius in KM
rectSWLat IN NUMBER, -- rectangle South West Latitude
rectSWLon IN NUMBER, -- rectangle South West Longitude
rectNELat IN NUMBER, -- rectangle North Est Latitude
rectNELon IN NUMBER -- rectangle North Est Longitude
)
RETURN NUMBER
AS
-- converts km to degrees (use 69 if miles)
kmToDegreeConst NUMBER := 111.045;
-- Remaining rectangle vertices
rectNWLat NUMBER;
rectNWLon NUMBER;
rectSELat NUMBER;
rectSELon NUMBER;
rectHeight NUMBER;
rectWIdth NUMBER;
circleDistanceLat NUMBER;
circleDistanceLon NUMBER;
cornerDistanceSQ NUMBER;
BEGIN
-- Initialization of remaining rectangle vertices
rectNWLat := rectNELat;
rectNWLon := rectSWLon;
rectSELat := rectSWLat;
rectSELon := rectNELon;
-- Rectangle sides length calculation
rectHeight := calc_distance(rectSWLat, rectSWLon, rectNWLat, rectNWLon);
rectWidth := calc_distance(rectSWLat, rectSWLon, rectSELat, rectSELon);
circleDistanceLat := abs( (circleCenterLat * kmToDegreeConst) - ((rectSWLat * kmToDegreeConst) + (rectHeight/2)) );
circleDistanceLon := abs( (circleCenterLon * kmToDegreeConst) - ((rectSWLon * kmToDegreeConst) + (rectWidth/2)) );
IF circleDistanceLon > ((rectWidth/2) + circleRadius) THEN
RETURN -1; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
IF circleDistanceLat > ((rectHeight/2) + circleRadius) THEN
RETURN -1; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
IF circleDistanceLon <= (rectWidth/2) THEN
RETURN 0; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
IF circleDistanceLat <= (rectHeight/2) THEN
RETURN 0; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
cornerDistanceSQ := POWER(circleDistanceLon - (rectWidth/2), 2) + POWER(circleDistanceLat - (rectHeight/2), 2);
IF cornerDistanceSQ <= POWER(circleRadius, 2) THEN
RETURN 0; -- -1 => NO Collision ; 0 => Collision Detected
ELSE
RETURN -1; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
RETURN -1; -- -1 => NO Collision ; 0 => Collision Detected
END;
为了可视化,拿你的键盘的numpad。如果键“5”代表你的矩形,那么所有的键1-9代表空间的9个象限除以构成矩形的线(5是里面的线)。
1)如果圆的中心在象限5(即在矩形内),则两个形状相交。
这里有两种可能的情况: a)圆与矩形的两条或多条相邻边相交。 b)圆与矩形的一条边相交。
第一种情况很简单。如果圆与矩形的两条相邻边相交,则它必须包含连接这两条边的角。(或者说它的中心在象限5,我们已经讲过了。还要注意,圆只与矩形的两条相对边相交的情况也被覆盖了。)
2)如果矩形的任意角A、B、C、D在圆内,则这两个形状相交。
第二种情况比较棘手。我们应该注意到,只有当圆的中心位于2、4、6或8象限中的一个象限时,才会发生这种情况。(事实上,如果中心在1、3、7、8象限中的任何一个象限上,则相应的角将是离它最近的点。)
现在我们有了圆的中心在一个“边”象限内的情况,它只与相应的边相交。那么,边缘上最接近圆中心的点必须在圆内。
3)对于每条直线AB, BC, CD, DA,构造经过圆中心p的垂直线p(AB, p), p(BC, p), p(CD, p), p(DA, p),对于每条垂直线,如果与原边的交点在圆内,则两个图形相交。
最后一步有一个捷径。如果圆的圆心在象限8,边AB是上边,交点的y坐标是A和B, x坐标是P。
你可以构造四条线的交点并检查它们是否在相应的边上,或者找出P在哪个象限并检查相应的交点。两者都应该化简为相同的布尔方程。要注意的是,上面的步骤2并没有排除P位于“角落”象限之一;它只是在寻找一个十字路口。
编辑:事实证明,我忽略了一个简单的事实,即#2是#3的子情况。毕竟,角也是边缘上的点。请看下面@ShreevatsaR的回答,你会得到很好的解释。与此同时,忘记上面的第二条,除非你想要一个快速但冗余的检查。
我在制作这款游戏时开发了这个算法:https://mshwf.github.io/mates/
如果圆与正方形接触,那么圆的中心线与正方形中心线之间的距离应该等于(直径+边)/2。 让我们有一个名为touching的变量来保存这个距离。问题是:我应该考虑哪条中心线:水平的还是垂直的? 考虑这个框架:
每条中心线给出了不同的距离,只有一条是没有碰撞的正确指示,但利用人类的直觉是理解自然算法如何工作的开始。
They are not touching, which means that the distance between the two centerlines should be greater than touching, which means that the natural algorithm picks the horizontal centerlines (the vertical centerlines says there's a collision!). By noticing multiple circles, you can tell: if the circle intersects with the vertical extension of the square, then we pick the vertical distance (between the horizontal centerlines), and if the circle intersects with the horizontal extension, we pick the horizontal distance:
另一个例子,圆4:它与正方形的水平延伸相交,那么我们考虑水平距离等于接触。
Ok, the tough part is demystified, now we know how the algorithm will work, but how we know with which extension the circle intersects? It's easy actually: we calculate the distance between the most right x and the most left x (of both the circle and the square), and the same for the y-axis, the one with greater value is the axis with the extension that intersects with the circle (if it's greater than diameter+side then the circle is outside the two square extensions, like circle #7). The code looks like:
right = Math.max(square.x+square.side, circle.x+circle.rad);
left = Math.min(square.x, circle.x-circle.rad);
bottom = Math.max(square.y+square.side, circle.y+circle.rad);
top = Math.min(square.y, circle.y-circle.rad);
if (right - left > down - top) {
//compare with horizontal distance
}
else {
//compare with vertical distance
}
/*These equations assume that the reference point of the square is at its top left corner, and the reference point of the circle is at its center*/
稍微改进一下e。james的回答:
double dx = abs(circle.x - rect.x) - rect.w / 2,
dy = abs(circle.y - rect.y) - rect.h / 2;
if (dx > circle.r || dy > circle.r) { return false; }
if (dx <= 0 || dy <= 0) { return true; }
return (dx * dx + dy * dy <= circle.r * circle.r);
这就减去了一次,而不是最多减去三次。
有一种非常简单的方法来做到这一点,你必须在x和y上夹住一个点,但在正方形内部,当圆心在一个垂直轴上的两个正方形边界点之间时,你需要将这些坐标夹到平行轴上,只是要确保夹住的坐标不超过正方形的限制。 然后只需得到圆心与夹紧坐标之间的距离,并检查距离是否小于圆的半径。
以下是我是如何做到的(前4个点是方坐标,其余是圆点):
bool DoesCircleImpactBox(float x, float y, float x1, float y1, float xc, float yc, float radius){
float ClampedX=0;
float ClampedY=0;
if(xc>=x and xc<=x1){
ClampedX=xc;
}
if(yc>=y and yc<=y1){
ClampedY=yc;
}
radius = radius+1;
if(xc<x) ClampedX=x;
if(xc>x1) ClampedX=x1-1;
if(yc<y) ClampedY=y;
if(yc>y1) ClampedY=y1-1;
float XDif=ClampedX-xc;
XDif=XDif*XDif;
float YDif=ClampedY-yc;
YDif=YDif*YDif;
if(XDif+YDif<=radius*radius) return true;
return false;
}