如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)
当前回答
我想出的最简单的解决办法非常直接。
它的工作原理是在矩形中找到离圆最近的点,然后比较距离。
您可以通过一些操作来完成所有这些操作,甚至可以避免使用平方根函数。
public boolean intersects(float cx, float cy, float radius, float left, float top, float right, float bottom)
{
float closestX = (cx < left ? left : (cx > right ? right : cx));
float closestY = (cy < top ? top : (cy > bottom ? bottom : cy));
float dx = closestX - cx;
float dy = closestY - cy;
return ( dx * dx + dy * dy ) <= radius * radius;
}
就是这样!上面的解决方案假设原点在世界的左上方,x轴指向下方。
如果你想要一个解决移动的圆形和矩形之间碰撞的解决方案,这要复杂得多,并且包含在我的另一个答案中。
其他回答
圆与矩形相交只有两种情况:
圆的中心在矩形的内部,或者 矩形的一条边在圆上有一个点。
注意,这并不要求矩形与轴平行。
(一种方法是:如果没有一条边在圆中有点(如果所有的边都完全“在”圆外),那么圆仍然可以与多边形相交的唯一方法是它完全位于多边形内部。)
有了这样的见解,就可以像下面这样工作,其中圆的中心是P,半径是R,矩形的顶点是A, B, C, D(不完整的代码):
def intersect(Circle(P, R), Rectangle(A, B, C, D)):
S = Circle(P, R)
return (pointInRectangle(P, Rectangle(A, B, C, D)) or
intersectCircle(S, (A, B)) or
intersectCircle(S, (B, C)) or
intersectCircle(S, (C, D)) or
intersectCircle(S, (D, A)))
如果你在写任何几何,你的库中可能已经有了上面的函数。否则,pointInRectangle()可以用几种方式实现;任何一般的多边形点方法都可以工作,但对于矩形,你可以检查这是否有效:
0 ≤ AP·AB ≤ AB·AB and 0 ≤ AP·AD ≤ AD·AD
intersectCircle()也很容易实现:一种方法是检查从P到直线的垂线的脚是否足够近并且在端点之间,否则检查端点。
最酷的是,同样的想法不仅适用于矩形,而且适用于一个圆与任何简单多边形的交点——甚至不必是凸多边形!
假设你有矩形的四条边,检查从这些边到圆心的距离,如果小于半径,那么这些形状是相交的。
if sqrt((rectangleRight.x - circleCenter.x)^2 +
(rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect
if sqrt((rectangleRight.x - circleCenter.x)^2 +
(rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect
if sqrt((rectangleLeft.x - circleCenter.x)^2 +
(rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect
if sqrt((rectangleLeft.x - circleCenter.x)^2 +
(rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect
实际上,这要简单得多。你只需要两样东西。
首先,你需要找出从圆中心到矩形每条直线的四个正交距离。如果任意三个圆的半径大于矩形的半径,那么圆就不会与矩形相交。
其次,你需要找到圆中心和矩形中心之间的距离,那么你的圆不会在矩形内部如果距离大于矩形对角线长度的一半。
好运!
为我工作(只工作时,矩形的角度是180)
function intersects(circle, rect) {
let left = rect.x + rect.width > circle.x - circle.radius;
let right = rect.x < circle.x + circle.radius;
let top = rect.y < circle.y + circle.radius;
let bottom = rect.y + rect.height > circle.y - circle.radius;
return left && right && bottom && top;
}
下面是修改后的代码100%工作:
public static bool IsIntersected(PointF circle, float radius, RectangleF rectangle)
{
var rectangleCenter = new PointF((rectangle.X + rectangle.Width / 2),
(rectangle.Y + rectangle.Height / 2));
var w = rectangle.Width / 2;
var h = rectangle.Height / 2;
var dx = Math.Abs(circle.X - rectangleCenter.X);
var dy = Math.Abs(circle.Y - rectangleCenter.Y);
if (dx > (radius + w) || dy > (radius + h)) return false;
var circleDistance = new PointF
{
X = Math.Abs(circle.X - rectangle.X - w),
Y = Math.Abs(circle.Y - rectangle.Y - h)
};
if (circleDistance.X <= (w))
{
return true;
}
if (circleDistance.Y <= (h))
{
return true;
}
var cornerDistanceSq = Math.Pow(circleDistance.X - w, 2) +
Math.Pow(circleDistance.Y - h, 2);
return (cornerDistanceSq <= (Math.Pow(radius, 2)));
}
Bassam Alugili