如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)
当前回答
我想出的最简单的解决办法非常直接。
它的工作原理是在矩形中找到离圆最近的点,然后比较距离。
您可以通过一些操作来完成所有这些操作,甚至可以避免使用平方根函数。
public boolean intersects(float cx, float cy, float radius, float left, float top, float right, float bottom)
{
float closestX = (cx < left ? left : (cx > right ? right : cx));
float closestY = (cy < top ? top : (cy > bottom ? bottom : cy));
float dx = closestX - cx;
float dy = closestY - cy;
return ( dx * dx + dy * dy ) <= radius * radius;
}
就是这样!上面的解决方案假设原点在世界的左上方,x轴指向下方。
如果你想要一个解决移动的圆形和矩形之间碰撞的解决方案,这要复杂得多,并且包含在我的另一个答案中。
其他回答
对于那些需要用SQL在地理坐标中计算圆/矩形碰撞的人, 这是我在oracle 11中实现的e.James建议算法。
在输入中,它需要圆坐标,圆半径km和矩形的两个顶点坐标:
CREATE OR REPLACE FUNCTION "DETECT_CIRC_RECT_COLLISION"
(
circleCenterLat IN NUMBER, -- circle Center Latitude
circleCenterLon IN NUMBER, -- circle Center Longitude
circleRadius IN NUMBER, -- circle Radius in KM
rectSWLat IN NUMBER, -- rectangle South West Latitude
rectSWLon IN NUMBER, -- rectangle South West Longitude
rectNELat IN NUMBER, -- rectangle North Est Latitude
rectNELon IN NUMBER -- rectangle North Est Longitude
)
RETURN NUMBER
AS
-- converts km to degrees (use 69 if miles)
kmToDegreeConst NUMBER := 111.045;
-- Remaining rectangle vertices
rectNWLat NUMBER;
rectNWLon NUMBER;
rectSELat NUMBER;
rectSELon NUMBER;
rectHeight NUMBER;
rectWIdth NUMBER;
circleDistanceLat NUMBER;
circleDistanceLon NUMBER;
cornerDistanceSQ NUMBER;
BEGIN
-- Initialization of remaining rectangle vertices
rectNWLat := rectNELat;
rectNWLon := rectSWLon;
rectSELat := rectSWLat;
rectSELon := rectNELon;
-- Rectangle sides length calculation
rectHeight := calc_distance(rectSWLat, rectSWLon, rectNWLat, rectNWLon);
rectWidth := calc_distance(rectSWLat, rectSWLon, rectSELat, rectSELon);
circleDistanceLat := abs( (circleCenterLat * kmToDegreeConst) - ((rectSWLat * kmToDegreeConst) + (rectHeight/2)) );
circleDistanceLon := abs( (circleCenterLon * kmToDegreeConst) - ((rectSWLon * kmToDegreeConst) + (rectWidth/2)) );
IF circleDistanceLon > ((rectWidth/2) + circleRadius) THEN
RETURN -1; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
IF circleDistanceLat > ((rectHeight/2) + circleRadius) THEN
RETURN -1; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
IF circleDistanceLon <= (rectWidth/2) THEN
RETURN 0; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
IF circleDistanceLat <= (rectHeight/2) THEN
RETURN 0; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
cornerDistanceSQ := POWER(circleDistanceLon - (rectWidth/2), 2) + POWER(circleDistanceLat - (rectHeight/2), 2);
IF cornerDistanceSQ <= POWER(circleRadius, 2) THEN
RETURN 0; -- -1 => NO Collision ; 0 => Collision Detected
ELSE
RETURN -1; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
RETURN -1; -- -1 => NO Collision ; 0 => Collision Detected
END;
我的方法:
从OBB /矩形上/中的圆计算closest_point (最近点将位于边缘/角落或内部) 计算从closest_point到圆心的squared_distance (距离的平方避免了平方根) 返回squared_distance <=圆半径的平方
下面是修改后的代码100%工作:
public static bool IsIntersected(PointF circle, float radius, RectangleF rectangle)
{
var rectangleCenter = new PointF((rectangle.X + rectangle.Width / 2),
(rectangle.Y + rectangle.Height / 2));
var w = rectangle.Width / 2;
var h = rectangle.Height / 2;
var dx = Math.Abs(circle.X - rectangleCenter.X);
var dy = Math.Abs(circle.Y - rectangleCenter.Y);
if (dx > (radius + w) || dy > (radius + h)) return false;
var circleDistance = new PointF
{
X = Math.Abs(circle.X - rectangle.X - w),
Y = Math.Abs(circle.Y - rectangle.Y - h)
};
if (circleDistance.X <= (w))
{
return true;
}
if (circleDistance.Y <= (h))
{
return true;
}
var cornerDistanceSq = Math.Pow(circleDistance.X - w, 2) +
Math.Pow(circleDistance.Y - h, 2);
return (cornerDistanceSq <= (Math.Pow(radius, 2)));
}
Bassam Alugili
球面和矩形相交于IIF 圆心和矩形的一个顶点之间的距离小于球体的半径 或 圆心与矩形的一条边之间的距离小于球面的半径([点线距离]) 或 圆的中心在矩形的内部 一点上距离:
P1 = [x1,y1] P2 = [x2,y2] Distance = sqrt(abs(x1 - x2)+abs(y1-y2))
点线路距离:
L1 = [x1,y1],L2 = [x2,y2] (two points of your line, ie the vertex points) P1 = [px,py] some point Distance d = abs( (x2-x1)(y1-py)-(x1-px)(y2-y1) ) / Distance(L1,L2)
矩形内圆中心: 采用分离轴的方法:如果存在一个投影到一条直线上,将矩形与点分开,它们就不相交
您将点投影在平行于矩形边的直线上,然后可以很容易地确定它们是否相交。如果它们不在所有4个投影上相交,它们(点和矩形)就不能相交。
你只需要内积(x= [x1,x2],y = [y1,y2],x *y = x1*y1 + x2*y2)
你的测试应该是这样的:
//rectangle edges: TL (top left), TR (top right), BL (bottom left), BR (bottom right) //point to test: POI seperated = false for egde in { {TL,TR}, {BL,BR}, {TL,BL},{TR-BR} }: // the edges D = edge[0] - edge[1] innerProd = D * POI Interval_min = min(D*edge[0],D*edge[1]) Interval_max = max(D*edge[0],D*edge[1]) if not ( Interval_min ≤ innerProd ≤ Interval_max ) seperated = true break // end for loop end if end for if (seperated is true) return "no intersection" else return "intersection" end if
它没有假设一个轴对齐的矩形,并且很容易扩展用于测试凸集之间的交集。
首先检查矩形和与圆相切的正方形是否重叠(简单)。如果它们不重叠,就不会碰撞。 检查圆的中心是否在矩形内(简单)。如果它在里面,它们就会碰撞。 计算矩形边到圆中心的最小平方距离(略硬)。如果小于半径的平方,它们就会碰撞,否则不会。
它是有效的,因为:
首先,它用一个便宜的算法检查最常见的场景,当它确定它们没有碰撞时,它就结束了。 然后它用一个廉价的算法检查下一个最常见的场景(不要计算平方根,使用平方值),当它确定它们碰撞时,它就结束了。 然后它执行更昂贵的算法来检查与矩形边框的碰撞。