MySQL数据库在什么时候开始失去性能?
物理数据库大小重要吗? 记录的数量重要吗? 性能下降是线性的还是指数级的?
我有一个我相信是一个大的数据库,大约有1500万条记录,占用了近2GB。基于这些数字,我是否有任何动机清理数据,或者我是否可以允许它继续扩展几年?
MySQL数据库在什么时候开始失去性能?
物理数据库大小重要吗? 记录的数量重要吗? 性能下降是线性的还是指数级的?
我有一个我相信是一个大的数据库,大约有1500万条记录,占用了近2GB。基于这些数字,我是否有任何动机清理数据,或者我是否可以允许它继续扩展几年?
物理数据库大小无关紧要。记录的数量并不重要。
In my experience the biggest problem that you are going to run in to is not size, but the number of queries you can handle at a time. Most likely you are going to have to move to a master/slave configuration so that the read queries can run against the slaves and the write queries run against the master. However if you are not ready for this yet, you can always tweak your indexes for the queries you are running to speed up the response times. Also there is a lot of tweaking you can do to the network stack and kernel in Linux that will help.
我的内存达到了10GB,只有中等数量的连接,它处理请求还不错。
我将首先关注您的索引,然后让服务器管理员查看您的操作系统,如果所有这些都没有帮助,那么可能是时候实现主/从配置了。
总的来说,这是一个非常微妙的问题,无论如何都不是微不足道的。我建议你阅读mysqlperformanceblog.com和高性能MySQL。我真的认为这个问题没有普遍的答案。
我正在做一个项目,它有一个MySQL数据库,几乎有1TB的数据。最重要的可伸缩性因素是RAM。如果您的表的索引适合内存,并且您的查询得到了高度优化,那么您可以使用普通机器处理合理数量的请求。
记录的数量确实很重要,这取决于表的外观。有很多varchar字段和只有几个int或long类型是有区别的。
数据库的物理大小也很重要:例如,考虑备份。根据你的引擎,你的物理db文件会增长,但不会缩小,例如innodb。因此,删除大量的行,并不有助于缩小您的物理文件。
这个问题有很多,在很多情况下,细节决定成败。
I once was called upon to look at a mysql that had "stopped working". I discovered that the DB files were residing on a Network Appliance filer mounted with NFS2 and with a maximum file size of 2GB. And sure enough, the table that had stopped accepting transactions was exactly 2GB on disk. But with regards to the performance curve I'm told that it was working like a champ right up until it didn't work at all! This experience always serves for me as a nice reminder that there're always dimensions above and below the one you naturally suspect.
谈论“数据库性能”有点毫无意义,“查询性能”在这里是一个更好的术语。答案是:这取决于查询,它所操作的数据,索引,硬件等。您可以了解将要扫描多少行,以及使用EXPLAIN语法将使用哪些索引。
2GB并不算真正的“大”数据库——它更像是一个中等大小的数据库。
我将首先关注您的索引,然后让服务器管理员查看您的操作系统,如果所有这些都没有帮助,可能是时候进行主/从配置了。
这是真的。另一个通常有效的方法是减少重复处理的数据量。如果你有“旧数据”和“新数据”,并且99%的查询都使用新数据,只需将所有旧数据移动到另一个表中-并且不要查看它;)
->看看分区。
2GB和约15M条记录是一个非常小的数据库-我在奔腾III上运行过更大的数据库(!),一切仍然运行得非常快。如果你的慢,那是数据库/应用程序设计的问题,而不是mysql的问题。
The database size does matter. If you have more than one table with more than a million records, then performance starts indeed to degrade. The number of records does of course affect the performance: MySQL can be slow with large tables. If you hit one million records you will get performance problems if the indices are not set right (for example no indices for fields in "WHERE statements" or "ON conditions" in joins). If you hit 10 million records, you will start to get performance problems even if you have all your indices right. Hardware upgrades - adding more memory and more processor power, especially memory - often help to reduce the most severe problems by increasing the performance again, at least to a certain degree. For example 37 signals went from 32 GB RAM to 128GB of RAM for the Basecamp database server.
还有一点需要考虑的是系统和数据在日常生活中的用途。
例如,对于一个用GPS监控汽车的系统来说,查询汽车前几个月的位置数据是不相关的。
因此,可以将数据传递给其他历史表,以便进行可能的查询,并减少日常查询的执行次数。
如果数据库设计不当,性能可能会在几千行中下降。
如果你有合适的索引,使用合适的引擎(不要使用MyISAM,因为需要多个dml),使用分区,根据使用情况分配正确的内存,当然还有良好的服务器配置,MySQL可以处理tb级的数据!
总有办法提高数据库性能。
这取决于您的查询和验证。
例如,我处理过一个包含10万种药物的表格,表格中每个药物都有一个超过15个字符的列通用名。我输入了一个查询来比较两个表格之间药物的通用名。查询需要更多的时间来运行。同样,如果使用药物索引,使用id列(如上所述)比较药物,只需要几秒钟。
数据库大小确实与字节数和表的行数有关。您将注意到light数据库和blob填充数据库之间的巨大性能差异。有一次我的应用程序卡住了,因为我把二进制图像放在字段中,而不是把图像保存在磁盘上的文件中,只把文件名放在数据库中。另一方面,迭代大量的行并不是免费的。
I'm currently managing a MySQL database on Amazon's cloud infrastructure that has grown to 160 GB. Query performance is fine. What has become a nightmare is backups, restores, adding slaves, or anything else that deals with the whole dataset, or even DDL on large tables. Getting a clean import of a dump file has become problematic. In order to make the process stable enough to automate, various choices needed to be made to prioritize stability over performance. If we ever had to recover from a disaster using a SQL backup, we'd be down for days.
Horizontally scaling SQL is also pretty painful, and in most cases leads to using it in ways you probably did not intend when you chose to put your data in SQL in the first place. Shards, read slaves, multi-master, et al, they are all really shitty solutions that add complexity to everything you ever do with the DB, and not one of them solves the problem; only mitigates it in some ways. I would strongly suggest looking at moving some of your data out of MySQL (or really any SQL) when you start approaching a dataset of a size where these types of things become an issue.
更新:几年后,我们的数据集已经增长到大约800 GiB。此外,我们还有一个200+ GiB的表和其他一些50-100 GiB的表。我之前说的都成立。它的性能仍然很好,但运行完整数据集操作的问题变得更糟了。
查询性能主要取决于它需要扫描的记录数,索引在其中起着很高的作用,索引数据大小与行数和索引数成正比。
带有索引字段条件和完整值的查询通常会在1毫秒内返回,但是starts_with, in, Between,显然包含条件可能需要更多的时间和更多的记录来扫描。
此外,您还将面临DDL的许多维护问题,如ALTER, DROP将缓慢且难以处理更多的实时流量,即使是添加索引或新列。
一般来说,建议将数据库集群到所需的尽可能多的集群中(500GB将是一个通用的基准,正如其他人所说,它取决于许多因素,并且可以根据用例而变化),这样可以提供更好的隔离性,并提供扩展特定集群的独立性(更适合B2B情况)