MySQL数据库在什么时候开始失去性能?
物理数据库大小重要吗? 记录的数量重要吗? 性能下降是线性的还是指数级的?
我有一个我相信是一个大的数据库,大约有1500万条记录,占用了近2GB。基于这些数字,我是否有任何动机清理数据,或者我是否可以允许它继续扩展几年?
MySQL数据库在什么时候开始失去性能?
物理数据库大小重要吗? 记录的数量重要吗? 性能下降是线性的还是指数级的?
我有一个我相信是一个大的数据库,大约有1500万条记录,占用了近2GB。基于这些数字,我是否有任何动机清理数据,或者我是否可以允许它继续扩展几年?
当前回答
还有一点需要考虑的是系统和数据在日常生活中的用途。
例如,对于一个用GPS监控汽车的系统来说,查询汽车前几个月的位置数据是不相关的。
因此,可以将数据传递给其他历史表,以便进行可能的查询,并减少日常查询的执行次数。
其他回答
谈论“数据库性能”有点毫无意义,“查询性能”在这里是一个更好的术语。答案是:这取决于查询,它所操作的数据,索引,硬件等。您可以了解将要扫描多少行,以及使用EXPLAIN语法将使用哪些索引。
2GB并不算真正的“大”数据库——它更像是一个中等大小的数据库。
I'm currently managing a MySQL database on Amazon's cloud infrastructure that has grown to 160 GB. Query performance is fine. What has become a nightmare is backups, restores, adding slaves, or anything else that deals with the whole dataset, or even DDL on large tables. Getting a clean import of a dump file has become problematic. In order to make the process stable enough to automate, various choices needed to be made to prioritize stability over performance. If we ever had to recover from a disaster using a SQL backup, we'd be down for days.
Horizontally scaling SQL is also pretty painful, and in most cases leads to using it in ways you probably did not intend when you chose to put your data in SQL in the first place. Shards, read slaves, multi-master, et al, they are all really shitty solutions that add complexity to everything you ever do with the DB, and not one of them solves the problem; only mitigates it in some ways. I would strongly suggest looking at moving some of your data out of MySQL (or really any SQL) when you start approaching a dataset of a size where these types of things become an issue.
更新:几年后,我们的数据集已经增长到大约800 GiB。此外,我们还有一个200+ GiB的表和其他一些50-100 GiB的表。我之前说的都成立。它的性能仍然很好,但运行完整数据集操作的问题变得更糟了。
2GB和约15M条记录是一个非常小的数据库-我在奔腾III上运行过更大的数据库(!),一切仍然运行得非常快。如果你的慢,那是数据库/应用程序设计的问题,而不是mysql的问题。
这取决于您的查询和验证。
例如,我处理过一个包含10万种药物的表格,表格中每个药物都有一个超过15个字符的列通用名。我输入了一个查询来比较两个表格之间药物的通用名。查询需要更多的时间来运行。同样,如果使用药物索引,使用id列(如上所述)比较药物,只需要几秒钟。
还要注意复杂连接。除了交易量之外,交易复杂性也是一个很大的因素。
重构繁重的查询有时会大大提高性能。