MySQL数据库在什么时候开始失去性能?

物理数据库大小重要吗? 记录的数量重要吗? 性能下降是线性的还是指数级的?

我有一个我相信是一个大的数据库,大约有1500万条记录,占用了近2GB。基于这些数字,我是否有任何动机清理数据,或者我是否可以允许它继续扩展几年?


当前回答

还有一点需要考虑的是系统和数据在日常生活中的用途。

例如,对于一个用GPS监控汽车的系统来说,查询汽车前几个月的位置数据是不相关的。

因此,可以将数据传递给其他历史表,以便进行可能的查询,并减少日常查询的执行次数。

其他回答

I'm currently managing a MySQL database on Amazon's cloud infrastructure that has grown to 160 GB. Query performance is fine. What has become a nightmare is backups, restores, adding slaves, or anything else that deals with the whole dataset, or even DDL on large tables. Getting a clean import of a dump file has become problematic. In order to make the process stable enough to automate, various choices needed to be made to prioritize stability over performance. If we ever had to recover from a disaster using a SQL backup, we'd be down for days.

Horizontally scaling SQL is also pretty painful, and in most cases leads to using it in ways you probably did not intend when you chose to put your data in SQL in the first place. Shards, read slaves, multi-master, et al, they are all really shitty solutions that add complexity to everything you ever do with the DB, and not one of them solves the problem; only mitigates it in some ways. I would strongly suggest looking at moving some of your data out of MySQL (or really any SQL) when you start approaching a dataset of a size where these types of things become an issue.

更新:几年后,我们的数据集已经增长到大约800 GiB。此外,我们还有一个200+ GiB的表和其他一些50-100 GiB的表。我之前说的都成立。它的性能仍然很好,但运行完整数据集操作的问题变得更糟了。

还要注意复杂连接。除了交易量之外,交易复杂性也是一个很大的因素。

重构繁重的查询有时会大大提高性能。

总的来说,这是一个非常微妙的问题,无论如何都不是微不足道的。我建议你阅读mysqlperformanceblog.com和高性能MySQL。我真的认为这个问题没有普遍的答案。

我正在做一个项目,它有一个MySQL数据库,几乎有1TB的数据。最重要的可伸缩性因素是RAM。如果您的表的索引适合内存,并且您的查询得到了高度优化,那么您可以使用普通机器处理合理数量的请求。

记录的数量确实很重要,这取决于表的外观。有很多varchar字段和只有几个int或long类型是有区别的。

数据库的物理大小也很重要:例如,考虑备份。根据你的引擎,你的物理db文件会增长,但不会缩小,例如innodb。因此,删除大量的行,并不有助于缩小您的物理文件。

这个问题有很多,在很多情况下,细节决定成败。

I once was called upon to look at a mysql that had "stopped working". I discovered that the DB files were residing on a Network Appliance filer mounted with NFS2 and with a maximum file size of 2GB. And sure enough, the table that had stopped accepting transactions was exactly 2GB on disk. But with regards to the performance curve I'm told that it was working like a champ right up until it didn't work at all! This experience always serves for me as a nice reminder that there're always dimensions above and below the one you naturally suspect.

查询性能主要取决于它需要扫描的记录数,索引在其中起着很高的作用,索引数据大小与行数和索引数成正比。

带有索引字段条件和完整值的查询通常会在1毫秒内返回,但是starts_with, in, Between,显然包含条件可能需要更多的时间和更多的记录来扫描。

此外,您还将面临DDL的许多维护问题,如ALTER, DROP将缓慢且难以处理更多的实时流量,即使是添加索引或新列。

一般来说,建议将数据库集群到所需的尽可能多的集群中(500GB将是一个通用的基准,正如其他人所说,它取决于许多因素,并且可以根据用例而变化),这样可以提供更好的隔离性,并提供扩展特定集群的独立性(更适合B2B情况)