我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
我参加聚会已经很晚了,但这种方法以前没有涉及过。当我们想要手动对某段代码进行基准测试时,我们可能需要首先找出哪些类方法占用了执行时间,这有时并不明显。我构建了以下元类来解决这个问题:
from __future__ import annotations
from functools import wraps
from time import time
from typing import Any, Callable, TypeVar, cast
F = TypeVar('F', bound=Callable[..., Any])
def timed_method(func: F, prefix: str | None = None) -> F:
prefix = (prefix + ' ') if prefix else ''
@wraps(func)
def inner(*args, **kwargs): # type: ignore
start = time()
try:
ret = func(*args, **kwargs)
except BaseException:
print(f'[ERROR] {prefix}{func.__qualname__}: {time() - start}')
raise
print(f'{prefix}{func.__qualname__}: {time() - start}')
return ret
return cast(F, inner)
class TimedClass(type):
def __new__(
cls: type[TimedClass],
name: str,
bases: tuple[type[type], ...],
attrs: dict[str, Any],
**kwargs: Any,
) -> TimedClass:
for name, attr in attrs.items():
if isinstance(attr, (classmethod, staticmethod)):
attrs[name] = type(attr)(timed_method(attr.__func__))
elif isinstance(attr, property):
attrs[name] = property(
timed_method(attr.fget, 'get') if attr.fget is not None else None,
timed_method(attr.fset, 'set') if attr.fset is not None else None,
timed_method(attr.fdel, 'del') if attr.fdel is not None else None,
)
elif callable(attr):
attrs[name] = timed_method(attr)
return super().__new__(cls, name, bases, attrs)
它允许如下使用:
class MyClass(metaclass=TimedClass):
def foo(self):
print('foo')
@classmethod
def bar(cls):
print('bar')
@staticmethod
def baz():
print('baz')
@property
def prop(self):
print('prop')
@prop.setter
def prop(self, v):
print('fset')
@prop.deleter
def prop(self):
print('fdel')
c = MyClass()
c.foo()
c.bar()
c.baz()
c.prop
c.prop = 2
del c.prop
MyClass.bar()
MyClass.baz()
它打印:
foo
MyClass.foo: 1.621246337890625e-05
bar
MyClass.bar: 4.5299530029296875e-06
baz
MyClass.baz: 4.291534423828125e-06
prop
get MyClass.prop: 3.814697265625e-06
fset
set MyClass.prop: 3.5762786865234375e-06
fdel
del MyClass.prop: 3.5762786865234375e-06
bar
MyClass.bar: 3.814697265625e-06
baz
MyClass.baz: 4.0531158447265625e-06
它可以与其他答案相结合,以更精确的方式代替time.time。
其他回答
基于https://stackoverflow.com/a/30024601/5095636,以下为无lambda版本,如flake8根据E731对lambda使用的警告:
from contextlib import contextmanager
from timeit import default_timer
@contextmanager
def elapsed_timer():
start_time = default_timer()
class _Timer():
start = start_time
end = default_timer()
duration = end - start
yield _Timer
end_time = default_timer()
_Timer.end = end_time
_Timer.duration = end_time - start_time
测试:
from time import sleep
with elapsed_timer() as t:
print("start:", t.start)
sleep(1)
print("end:", t.end)
t.start
t.end
t.duration
以下是一个答案,使用:
对代码片段进行计时的简洁上下文管理器time.perf_counter()计算时间增量。与time.time()相反,它是不可调整的(sysadmin和守护程序都不能更改其值),因此应该首选它(参见文档)python3.10+(因为键入,但可以很容易地适应以前的版本)
import time
from contextlib import contextmanager
from typing import Iterator
@contextmanager
def time_it() -> Iterator[None]:
tic: float = time.perf_counter()
try:
yield
finally:
toc: float = time.perf_counter()
print(f"Computation time = {1000*(toc - tic):.3f}ms")
如何使用它的示例:
# Example: vector dot product computation
with time_it():
A = B = range(1000000)
dot = sum(a*b for a,b in zip(A,B))
# Computation time = 95.353ms
附录
import time
# to check adjustability
assert time.get_clock_info('time').adjustable
assert time.get_clock_info('perf_counter').adjustable is False
您可以使用Benchmark Timer(免责声明:我是作者):
基准计时器使用BenchmarkTimer类来测量执行某段代码所需的时间。这比内置的timeit函数具有更大的灵活性,并且与其他代码在相同的范围内运行。安装pip安装git+https://github.com/michaelitvin/benchmark-timer.git@main#egg=基准计时器用法单次迭代示例从benchmark_timer导入BenchmarkTimer导入时间使用BenchmarkTimer(name=“MySimpleCode”)作为tm,tm.single_ieration():睡眠时间(.3)输出:正在对标MySimpleCode。。。MySimpleCode基准:n_iters=1 avg=0.300881s std=0.000000s range=[0.3000881s ~ 0.300881s]多次迭代示例从benchmark_timer导入BenchmarkTimer导入时间使用BenchmarkTimer(name=“MyTimedCode”,print_iters=True)作为tm:对于tm迭代中的timing_iteration(n=5,预热=2):定时重复:睡眠时间(.1)打印(“\n===============\n”)print(“定时列表:”,列表(tm.timenings.values()))输出:正在对标MyTimedCode。。。[MyTimedCode]iter=0耗时0.099755s(预热)[MyTimedCode]iter=1耗时0.100476秒(预热)[MyTimedCode]iter=2耗时0.100189秒[MyTimedCode]iter=3耗时0.099900s[MyTimedCode]iter=4耗时0.100888秒MyTimedCode基准:n_iters=3 avg=0.100326s std=0.000414s range=[0.099900s ~ 0.100888s]===================时间列表:[0.1001885000000001,0.09990049999999995,0.10088760000000008]
使用一个上下文管理器可以很有趣地做到这一点,它可以自动记住进入with块时的开始时间,然后在块退出时冻结结束时间。通过一些小技巧,您甚至可以从同一个上下文管理器函数获得块内的运行时间计数。
核心库没有这个(但可能应该有)。一旦就位,您可以执行以下操作:
with elapsed_timer() as elapsed:
# some lengthy code
print( "midpoint at %.2f seconds" % elapsed() ) # time so far
# other lengthy code
print( "all done at %.2f seconds" % elapsed() )
以下是足以完成此任务的contextmanager代码:
from contextlib import contextmanager
from timeit import default_timer
@contextmanager
def elapsed_timer():
start = default_timer()
elapser = lambda: default_timer() - start
yield lambda: elapser()
end = default_timer()
elapser = lambda: end-start
以及一些可运行的演示代码:
import time
with elapsed_timer() as elapsed:
time.sleep(1)
print(elapsed())
time.sleep(2)
print(elapsed())
time.sleep(3)
注意,通过设计此函数,elapsed()的返回值在块退出时被冻结,并且进一步的调用返回相同的持续时间(在这个玩具示例中大约为6秒)。
在python3上:
from time import sleep, perf_counter as pc
t0 = pc()
sleep(1)
print(pc()-t0)
优雅而短小。