我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
我参加聚会已经很晚了,但这种方法以前没有涉及过。当我们想要手动对某段代码进行基准测试时,我们可能需要首先找出哪些类方法占用了执行时间,这有时并不明显。我构建了以下元类来解决这个问题:
from __future__ import annotations
from functools import wraps
from time import time
from typing import Any, Callable, TypeVar, cast
F = TypeVar('F', bound=Callable[..., Any])
def timed_method(func: F, prefix: str | None = None) -> F:
prefix = (prefix + ' ') if prefix else ''
@wraps(func)
def inner(*args, **kwargs): # type: ignore
start = time()
try:
ret = func(*args, **kwargs)
except BaseException:
print(f'[ERROR] {prefix}{func.__qualname__}: {time() - start}')
raise
print(f'{prefix}{func.__qualname__}: {time() - start}')
return ret
return cast(F, inner)
class TimedClass(type):
def __new__(
cls: type[TimedClass],
name: str,
bases: tuple[type[type], ...],
attrs: dict[str, Any],
**kwargs: Any,
) -> TimedClass:
for name, attr in attrs.items():
if isinstance(attr, (classmethod, staticmethod)):
attrs[name] = type(attr)(timed_method(attr.__func__))
elif isinstance(attr, property):
attrs[name] = property(
timed_method(attr.fget, 'get') if attr.fget is not None else None,
timed_method(attr.fset, 'set') if attr.fset is not None else None,
timed_method(attr.fdel, 'del') if attr.fdel is not None else None,
)
elif callable(attr):
attrs[name] = timed_method(attr)
return super().__new__(cls, name, bases, attrs)
它允许如下使用:
class MyClass(metaclass=TimedClass):
def foo(self):
print('foo')
@classmethod
def bar(cls):
print('bar')
@staticmethod
def baz():
print('baz')
@property
def prop(self):
print('prop')
@prop.setter
def prop(self, v):
print('fset')
@prop.deleter
def prop(self):
print('fdel')
c = MyClass()
c.foo()
c.bar()
c.baz()
c.prop
c.prop = 2
del c.prop
MyClass.bar()
MyClass.baz()
它打印:
foo
MyClass.foo: 1.621246337890625e-05
bar
MyClass.bar: 4.5299530029296875e-06
baz
MyClass.baz: 4.291534423828125e-06
prop
get MyClass.prop: 3.814697265625e-06
fset
set MyClass.prop: 3.5762786865234375e-06
fdel
del MyClass.prop: 3.5762786865234375e-06
bar
MyClass.bar: 3.814697265625e-06
baz
MyClass.baz: 4.0531158447265625e-06
它可以与其他答案相结合,以更精确的方式代替time.time。
其他回答
仅Python 3:
由于从Python 3.3开始,time.cclock()已被弃用,因此您将希望使用time.perf_counter()进行系统范围的计时,或使用time.process_time()进行进程范围的计时(就像您以前使用time.cclok()的方式一样):
import time
t = time.process_time()
#do some stuff
elapsed_time = time.process_time() - t
新函数process_time将不包括睡眠期间经过的时间。
测量小代码片段的执行时间。
时间单位:以秒为单位,以浮点数表示
import timeit
t = timeit.Timer('li = list(map(lambda x:x*2,[1,2,3,4,5]))')
t.timeit()
t.repeat()
>[1.2934070999999676, 1.3335035000000062, 1.422568500000125]
repeat()方法可以方便地多次调用timeit()并返回结果列表。重复(重复=3)¶有了这个列表,我们可以计算所有时间的平均值。默认情况下,timeit()在计时期间暂时关闭垃圾收集。time.Timer()解决了这个问题。赞成的意见:timeit.Timer()使独立计时更具可比性。gc可能是被测函数性能的重要组成部分。如果是,gc(垃圾收集器)可以作为设置字符串中的第一条语句重新启用。例如:timeit.Timer('li=列表(映射(lambda x:x*2,[1,2,3,4,5])',设置='gc.enable()')
源Python文档!
如何测量两次操作之间的时间。比较两次操作的时间。
import time
b = (123*321)*123
t1 = time.time()
c = ((9999^123)*321)^123
t2 = time.time()
print(t2-t1)
7.987022399902344e-05
给定要计时的函数,
测试.py:
def foo():
# print "hello"
return "hello"
使用timeit的最简单方法是从命令行调用它:
% python -mtimeit -s'import test' 'test.foo()'
1000000 loops, best of 3: 0.254 usec per loop
不要尝试使用time.time或time.clock(天真地)来比较函数的速度。他们会给出误导性的结果。
PS.不要将打印语句放在您希望计时的函数中;否则测量的时间将取决于终端的速度。
我参加聚会已经很晚了,但这种方法以前没有涉及过。当我们想要手动对某段代码进行基准测试时,我们可能需要首先找出哪些类方法占用了执行时间,这有时并不明显。我构建了以下元类来解决这个问题:
from __future__ import annotations
from functools import wraps
from time import time
from typing import Any, Callable, TypeVar, cast
F = TypeVar('F', bound=Callable[..., Any])
def timed_method(func: F, prefix: str | None = None) -> F:
prefix = (prefix + ' ') if prefix else ''
@wraps(func)
def inner(*args, **kwargs): # type: ignore
start = time()
try:
ret = func(*args, **kwargs)
except BaseException:
print(f'[ERROR] {prefix}{func.__qualname__}: {time() - start}')
raise
print(f'{prefix}{func.__qualname__}: {time() - start}')
return ret
return cast(F, inner)
class TimedClass(type):
def __new__(
cls: type[TimedClass],
name: str,
bases: tuple[type[type], ...],
attrs: dict[str, Any],
**kwargs: Any,
) -> TimedClass:
for name, attr in attrs.items():
if isinstance(attr, (classmethod, staticmethod)):
attrs[name] = type(attr)(timed_method(attr.__func__))
elif isinstance(attr, property):
attrs[name] = property(
timed_method(attr.fget, 'get') if attr.fget is not None else None,
timed_method(attr.fset, 'set') if attr.fset is not None else None,
timed_method(attr.fdel, 'del') if attr.fdel is not None else None,
)
elif callable(attr):
attrs[name] = timed_method(attr)
return super().__new__(cls, name, bases, attrs)
它允许如下使用:
class MyClass(metaclass=TimedClass):
def foo(self):
print('foo')
@classmethod
def bar(cls):
print('bar')
@staticmethod
def baz():
print('baz')
@property
def prop(self):
print('prop')
@prop.setter
def prop(self, v):
print('fset')
@prop.deleter
def prop(self):
print('fdel')
c = MyClass()
c.foo()
c.bar()
c.baz()
c.prop
c.prop = 2
del c.prop
MyClass.bar()
MyClass.baz()
它打印:
foo
MyClass.foo: 1.621246337890625e-05
bar
MyClass.bar: 4.5299530029296875e-06
baz
MyClass.baz: 4.291534423828125e-06
prop
get MyClass.prop: 3.814697265625e-06
fset
set MyClass.prop: 3.5762786865234375e-06
fdel
del MyClass.prop: 3.5762786865234375e-06
bar
MyClass.bar: 3.814697265625e-06
baz
MyClass.baz: 4.0531158447265625e-06
它可以与其他答案相结合,以更精确的方式代替time.time。