有没有O(1/n)种算法?
或者其他小于O(1)的数?
有没有O(1/n)种算法?
或者其他小于O(1)的数?
当前回答
正如已经指出的,除了null函数可能的例外,不可能有O(1/n)个函数,因为所花费的时间必须接近0。
当然,有一些算法,比如康拉德定义的算法,它们至少在某种意义上应该小于O(1)
def get_faster(list):
how_long = 1/len(list)
sleep(how_long)
If you want to investigate these algorithms, you should either define your own asymptotic measurement, or your own notion of time. For example, in the above algorithm, I could allow the use of a number of "free" operations a set amount of times. In the above algorithm, if I define t' by excluding the time for everything but the sleep, then t'=1/n, which is O(1/n). There are probably better examples, as the asymptotic behavior is trivial. In fact, I am sure that someone out there can come up with senses that give non-trivial results.
其他回答
从我之前学习的大O符号来看,即使你需要1步(比如检查一个变量,做一个赋值),那也是O(1)。
注意,O(1)和O(6)是一样的,因为“常数”并不重要。这就是为什么O(n)和O(3n)是一样的。
如果你需要1步,那就是O(1)。因为你的程序至少需要1步,所以算法的最小值是O(1)。除非我们不这样做,那么它是O(0),对吧?如果我们做任何操作,那么它就是O(1)这是它能达到的最小值。
(如果我们选择不这样做,那么它可能成为一个禅宗或道的问题……在编程领域,O(1)仍然是最小值)。
或者这样怎么样:
程序员:老板,我找到了一个在O(1)时间内完成的方法! 老板:没必要,今天早上我们就要破产了。 程序员:哦,那么它就变成了O(0)。
如果不管输入数据如何,答案都是一样的,那么你就有一个O(0)算法。
或者换句话说——在提交输入数据之前,答案就已经知道了 -这个功能可以优化-所以O(0)
我猜小于O(1)是不可能的。算法所花费的任何时间都称为O(1)。但是对于O(1/n)下面的函数呢。(我知道这个解决方案中已经出现了许多变体,但我猜它们都有一些缺陷(不是主要的,它们很好地解释了这个概念)。这里有一个,只是为了方便讨论:
def 1_by_n(n, C = 10): #n could be float. C could be any positive number
if n <= 0.0: #If input is actually 0, infinite loop.
while True:
sleep(1) #or pass
return #This line is not needed and is unreachable
delta = 0.0001
itr = delta
while delta < C/n:
itr += delta
因此,随着n的增加,函数将花费越来越少的时间。此外,如果输入实际为0,则函数将永远返回。
有人可能会说,这将受到机器精度的限制。因此,由于c eit有一个上界,它是O(1)。但我们也可以绕过它,通过在字符串中输入n和C。加法和比较是对字符串进行的。用这个方法,我们可以把n减小到任意小。因此,即使忽略n = 0,函数的上限也是无界的。
我也相信我们不能说运行时间是O(1/n)。我们应该写成O(1 + 1/n)
我看到一个算法的上限是O(1/n):
由于程序外部的原因(可能是硬件的原因,也可能是处理器中的其他核心的原因),有大量的输入正在发生变化,你必须选择一个随机但有效的输入。
现在,如果它没有变化,你可以简单地列出一个项目列表,随机选择一个,然后得到O(1)次。然而,数据的动态性质使我们无法列出列表,您只能随机探测并测试探测的有效性。(请注意,从本质上讲,不能保证返回时答案仍然有效。这仍然是有用处的——比如游戏中的单位AI。它可以射击在扣动扳机时从视线中消失的目标。)
它的最差情况性能为无穷大,但平均情况性能随着数据空间的填满而下降。
正如已经指出的,除了null函数可能的例外,不可能有O(1/n)个函数,因为所花费的时间必须接近0。
当然,有一些算法,比如康拉德定义的算法,它们至少在某种意义上应该小于O(1)
def get_faster(list):
how_long = 1/len(list)
sleep(how_long)
If you want to investigate these algorithms, you should either define your own asymptotic measurement, or your own notion of time. For example, in the above algorithm, I could allow the use of a number of "free" operations a set amount of times. In the above algorithm, if I define t' by excluding the time for everything but the sleep, then t'=1/n, which is O(1/n). There are probably better examples, as the asymptotic behavior is trivial. In fact, I am sure that someone out there can come up with senses that give non-trivial results.