好吧——我几乎不好意思在这里张贴这个(如果有人投票关闭,我会删除),因为这似乎是一个基本的问题。
这是在c++中四舍五入到一个数字的倍数的正确方法吗?
我知道还有其他与此相关的问题,但我特别感兴趣的是,在c++中做这件事的最佳方法是什么:
int roundUp(int numToRound, int multiple)
{
if(multiple == 0)
{
return numToRound;
}
int roundDown = ( (int) (numToRound) / multiple) * multiple;
int roundUp = roundDown + multiple;
int roundCalc = roundUp;
return (roundCalc);
}
更新:
抱歉,我可能没把意思说清楚。下面是一些例子:
roundUp(7, 100)
//return 100
roundUp(117, 100)
//return 200
roundUp(477, 100)
//return 500
roundUp(1077, 100)
//return 1100
roundUp(52, 20)
//return 60
roundUp(74, 30)
//return 90
以下是我根据OP的建议和其他人给出的例子给出的解决方案。因为大多数人都在寻找它来处理负数,这个解决方案就是这样做的,而不使用任何特殊的功能,如腹肌等。
通过避免使用模数而使用除法,负数是一个自然的结果,尽管它是四舍五入。在计算出向下舍入的版本之后,它会执行所需的数学运算以向上舍入,或者向负方向舍入,或者向正方向舍入。
还要注意的是,没有使用特殊的函数来计算任何东西,所以这里有一个小的速度提升。
int RoundUp(int n, int multiple)
{
// prevent divide by 0 by returning n
if (multiple == 0) return n;
// calculate the rounded down version
int roundedDown = n / multiple * multiple;
// if the rounded version and original are the same, then return the original
if (roundedDown == n) return n;
// handle negative number and round up according to the sign
// NOTE: if n is < 0 then subtract the multiple, otherwise add it
return (n < 0) ? roundedDown - multiple : roundedDown + multiple;
}
float roundUp(float number, float fixedBase) {
if (fixedBase != 0 && number != 0) {
float sign = number > 0 ? 1 : -1;
number *= sign;
number /= fixedBase;
int fixedPoint = (int) ceil(number);
number = fixedPoint * fixedBase;
number *= sign;
}
return number;
}
这适用于任何浮点数或基数(例如,你可以四舍五入到最接近的6.75)。本质上,它是转换到定点,四舍五入,然后转换回来。它通过舍入0来处理负号。它还通过将函数转换为roundDown来处理值的负舍入。
int特定的版本如下所示:
int roundUp(int number, int fixedBase) {
if (fixedBase != 0 && number != 0) {
int sign = number > 0 ? 1 : -1;
int baseSign = fixedBase > 0 ? 1 : 0;
number *= sign;
int fixedPoint = (number + baseSign * (fixedBase - 1)) / fixedBase;
number = fixedPoint * fixedBase;
number *= sign;
}
return number;
}
这或多或少是plinth的答案,加上负输入支持。
四舍五入到2的幂:
以防有人需要一个正数四舍五入到2的幂的最近倍数的解(因为这就是我在这里结束的原因):
// number: the number to be rounded (ex: 5, 123, 98345, etc.)
// pow2: the power to be rounded to (ex: to round to 16, use '4')
int roundPow2 (int number, int pow2) {
pow2--; // because (2 exp x) == (1 << (x -1))
pow2 = 0x01 << pow2;
pow2--; // because for any
//
// (x = 2 exp x)
//
// subtracting one will
// yield a field of ones
// which we can use in a
// bitwise OR
number--; // yield a similar field for
// bitwise OR
number = number | pow2;
number++; // restore value by adding one back
return number;
}
如果输入的数字已经是一个倍数,那么它将保持不变。
以下是GCC使用- o2或- os给出的x86_64输出(9Sep2013 Build - godbolt GCC online):
roundPow2(int, int):
lea ecx, [rsi-1]
mov eax, 1
sub edi, 1
sal eax, cl
sub eax, 1
or eax, edi
add eax, 1
ret
每一行C代码都与它在程序集中的行完全对应:http://goo.gl/DZigfX
每条指令都非常快,所以这个函数也非常快。由于代码非常小且快速,因此在使用时内联该函数可能很有用。
信贷:
算法:Hagen von Eitzen @ Math。SE
Godbolt交互式编译器:@mattgodbolt/gcc-explorer在GitHub上
这适用于正数,不适用于负数。它只使用整数数学。
int roundUp(int numToRound, int multiple)
{
if (multiple == 0)
return numToRound;
int remainder = numToRound % multiple;
if (remainder == 0)
return numToRound;
return numToRound + multiple - remainder;
}
编辑:这里有一个适用于负数的版本,如果你所说的“上”是指一个总是>=输入的结果。
int roundUp(int numToRound, int multiple)
{
if (multiple == 0)
return numToRound;
int remainder = abs(numToRound) % multiple;
if (remainder == 0)
return numToRound;
if (numToRound < 0)
return -(abs(numToRound) - remainder);
else
return numToRound + multiple - remainder;
}