好吧——我几乎不好意思在这里张贴这个(如果有人投票关闭,我会删除),因为这似乎是一个基本的问题。

这是在c++中四舍五入到一个数字的倍数的正确方法吗?

我知道还有其他与此相关的问题,但我特别感兴趣的是,在c++中做这件事的最佳方法是什么:

int roundUp(int numToRound, int multiple)
{
 if(multiple == 0)
 {
  return numToRound;
 }

 int roundDown = ( (int) (numToRound) / multiple) * multiple;
 int roundUp = roundDown + multiple; 
 int roundCalc = roundUp;
 return (roundCalc);
}

更新: 抱歉,我可能没把意思说清楚。下面是一些例子:

roundUp(7, 100)
//return 100

roundUp(117, 100)
//return 200

roundUp(477, 100)
//return 500

roundUp(1077, 100)
//return 1100

roundUp(52, 20)
//return 60

roundUp(74, 30)
//return 90

当前回答

这是使用模板函数的现代c++方法,该模板函数适用于float, double, long, int和short(但不适用于long long和long double,因为使用了double值)。

#include <cmath>
#include <iostream>

template<typename T>
T roundMultiple( T value, T multiple )
{
    if (multiple == 0) return value;
    return static_cast<T>(std::round(static_cast<double>(value)/static_cast<double>(multiple))*static_cast<double>(multiple));
}

int main()
{
    std::cout << roundMultiple(39298.0, 100.0) << std::endl;
    std::cout << roundMultiple(20930.0f, 1000.0f) << std::endl;
    std::cout << roundMultiple(287399, 10) << std::endl;
}

但是你可以很容易地通过模板专门化添加long long和long double的支持,如下所示:

template<>
long double roundMultiple<long double>( long double value, long double multiple)
{
    if (multiple == 0.0l) return value;
    return std::round(value/multiple)*multiple;
}

template<>
long long roundMultiple<long long>( long long value, long long multiple)
{
    if (multiple == 0.0l) return value;
    return static_cast<long long>(std::round(static_cast<long double>(value)/static_cast<long double>(multiple))*static_cast<long double>(multiple));
}

要创建向上舍入的函数,请使用std::ceil,而总是向下舍入的函数请使用std::floor。上面的例子是使用std::round进行舍入。

创建“round up”或更广为人知的“round ceiling”模板函数,如下所示:

template<typename T>
T roundCeilMultiple( T value, T multiple )
{
    if (multiple == 0) return value;
    return static_cast<T>(std::ceil(static_cast<double>(value)/static_cast<double>(multiple))*static_cast<double>(multiple));
}

创建“round down”或更广为人知的“round floor”模板函数,如下所示:

template<typename T>
T roundFloorMultiple( T value, T multiple )
{
    if (multiple == 0) return value;
    return static_cast<T>(std::floor(static_cast<double>(value)/static_cast<double>(multiple))*static_cast<double>(multiple));
}

其他回答

这将得到正整数的结果:

#include <iostream>
using namespace std;

int roundUp(int numToRound, int multiple);

int main() {
    cout << "answer is: " << roundUp(7, 100) << endl;
    cout << "answer is: " << roundUp(117, 100) << endl;
    cout << "answer is: " << roundUp(477, 100) << endl;
    cout << "answer is: " << roundUp(1077, 100) << endl;
    cout << "answer is: " << roundUp(52,20) << endl;
    cout << "answer is: " << roundUp(74,30) << endl;
    return 0;
}

int roundUp(int numToRound, int multiple) {
    if (multiple == 0) {
        return 0;
    }
    int result = (int) (numToRound / multiple) * multiple;
    if (numToRound % multiple) {
        result += multiple;
    } 
    return result;
}

这里是输出:

answer is: 100
answer is: 200
answer is: 500
answer is: 1100
answer is: 60
answer is: 90

可能更安全的方法是强制转换为浮点数并使用ceil()—除非您知道int除法将产生正确的结果。

float roundUp(float number, float fixedBase) {
    if (fixedBase != 0 && number != 0) {
        float sign = number > 0 ? 1 : -1;
        number *= sign;
        number /= fixedBase;
        int fixedPoint = (int) ceil(number);
        number = fixedPoint * fixedBase;
        number *= sign;
    }
    return number;
}

这适用于任何浮点数或基数(例如,你可以四舍五入到最接近的6.75)。本质上,它是转换到定点,四舍五入,然后转换回来。它通过舍入0来处理负号。它还通过将函数转换为roundDown来处理值的负舍入。

int特定的版本如下所示:

int roundUp(int number, int fixedBase) {
    if (fixedBase != 0 && number != 0) {
        int sign = number > 0 ? 1 : -1;
        int baseSign = fixedBase > 0 ? 1 : 0;
        number *= sign;
        int fixedPoint = (number + baseSign * (fixedBase - 1)) / fixedBase;
        number = fixedPoint * fixedBase;
        number *= sign;
    }
    return number;
}

这或多或少是plinth的答案,加上负输入支持。

四舍五入到最接近的倍数,恰好是2的幂

unsigned int round(unsigned int value, unsigned int multiple){
    return ((value-1u) & ~(multiple-1u)) + multiple;
}

这在沿中间线分配时很有用,其中您想要的舍入增量是2的幂,但结果值只需是它的倍数。在gcc上,这个函数体生成8条没有除法或分支的汇编指令。

round(  0,  16) ->   0
round(  1,  16) ->  16
round( 16,  16) ->  16
round(257, 128) -> 384 (128 * 3)
round(333,   2) -> 334

这可能会有所帮助:

int RoundUpToNearestMultOfNumber(int val, int num)
{
  assert(0 != num);
  return (floor((val + num) / num) * num);
}