super()如何处理多重继承?例如,给定:

class First(object):
    def __init__(self):
        print "first"

class Second(object):
    def __init__(self):
        print "second"

class Third(First, Second):
    def __init__(self):
        super(Third, self).__init__()
        print "that's it"

Third的哪个父方法执行super()。__init__ refer to?我可以选择哪些运行吗?

我知道这与方法解析顺序(MRO)有关。


这就是所谓的钻石问题,该页面有一个关于Python的条目,但简而言之,Python将从左到右调用超类的方法。


Guido在他的博客文章Method Resolution Order(包括两个早期的尝试)中对此进行了详细的描述。

在你的例子中,Third()将调用First.__init__。Python按照从左到右列出的顺序在类的父类中查找每个属性。在本例中,我们正在寻找__init__。如果你定义

class Third(First, Second):
    ...

Python将首先查看First,如果First没有该属性,那么它将查看Second。

当继承开始交叉路径时(例如First从Second继承),这种情况会变得更加复杂。阅读上面的链接了解更多细节,但是,简而言之,Python将试图保持每个类在继承列表中出现的顺序,从子类本身开始。

例如,如果你有:

class First(object):
    def __init__(self):
        print "first"

class Second(First):
    def __init__(self):
        print "second"

class Third(First):
    def __init__(self):
        print "third"

class Fourth(Second, Third):
    def __init__(self):
        super(Fourth, self).__init__()
        print "that's it"

MRO为[第四、第二、第三、第一]。

顺便说一下:如果Python无法找到一致的方法解析顺序,它将引发异常,而不是退回到可能使用户感到惊讶的行为。

模棱两可的MRO示例:

class First(object):
    def __init__(self):
        print "first"
        
class Second(First):
    def __init__(self):
        print "second"

class Third(First, Second):
    def __init__(self):
        print "third"

Third的MRO是[First, Second]还是[Second, First]?没有明显的期望,Python将引发一个错误:

TypeError: Error when calling the metaclass bases
    Cannot create a consistent method resolution order (MRO) for bases Second, First

为什么上面的例子没有super()调用?这些示例的重点是展示MRO是如何构造的。他们不打算打印“第一\第二\第三”或其他什么。当然,您可以(也应该)尝试一下这个示例,添加super()调用,看看会发生什么,并更深入地理解Python的继承模型。但我的目标是保持简单,并展示MRO是如何构建的。正如我解释的那样:

>>> Fourth.__mro__
(<class '__main__.Fourth'>,
 <class '__main__.Second'>, <class '__main__.Third'>,
 <class '__main__.First'>,
 <type 'object'>)

你的代码和其他答案都是错误的。它们缺少前两个类中的super()调用,这是合作子类化工作所必需的。更好的是:

class First(object):
    def __init__(self):
        super(First, self).__init__()
        print("first")

class Second(object):
    def __init__(self):
        super(Second, self).__init__()
        print("second")

class Third(First, Second):
    def __init__(self):
        super(Third, self).__init__()
        print("third")

输出:

>>> Third()
second
first
third

super()调用在每一步都在MRO中查找下一个方法,这就是为什么First和Second也必须拥有它,否则执行将在Second.__init__()结束时停止。


如果在First和Second中没有super()调用,输出就会丢失Second:

>>> Third()
first
third

我知道这并没有直接回答super()问题,但我觉得它有足够的相关性来分享。

还有一种方法可以直接调用每个继承的类:


class First(object):
    def __init__(self):
        print '1'

class Second(object):
    def __init__(self):
        print '2'

class Third(First, Second):
    def __init__(self):
        Second.__init__(self)

请注意,如果你这样做,你将不得不手动调用每个,因为我很确定First的__init__()不会被调用。


另一个尚未涉及的点是传递初始化类的参数。由于super的目标取决于子类,传递参数的唯一好方法是将它们打包在一起。然后注意不要让相同的参数名具有不同的含义。

例子:

class A(object):
    def __init__(self, **kwargs):
        print('A.__init__')
        super().__init__()

class B(A):
    def __init__(self, **kwargs):
        print('B.__init__ {}'.format(kwargs['x']))
        super().__init__(**kwargs)


class C(A):
    def __init__(self, **kwargs):
        print('C.__init__ with {}, {}'.format(kwargs['a'], kwargs['b']))
        super().__init__(**kwargs)


class D(B, C): # MRO=D, B, C, A
    def __init__(self):
        print('D.__init__')
        super().__init__(a=1, b=2, x=3)

print(D.mro())
D()

给:

[<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>]
D.__init__
B.__init__ 3
C.__init__ with 1, 2
A.__init__

直接调用超类__init__来更直接地赋值参数是很诱人的,但如果在超类中有任何超调用和/或MRO被更改并且类a可能被多次调用,则会失败,这取决于实现。

总结一下:合作继承和初始化的超参数和特定参数不能很好地协同工作。


这就是我如何解决具有不同初始化变量的多重继承和具有相同函数调用的多个mixin的问题。我必须显式地为传递的**kwargs添加变量,并添加一个MixIn接口作为超级调用的端点。

这里A是一个可扩展的基类,B和C是MixIn类,它们都提供函数f。A和B都在它们的__init__中期望参数v,而C期望w。 函数f接受一个参数y。Q继承了所有三个类。MixInF是B和C的mixin接口。

这段代码的IPython NoteBook Github回购的代码示例


class A(object):
    def __init__(self, v, *args, **kwargs):
        print "A:init:v[{0}]".format(v)
        kwargs['v']=v
        super(A, self).__init__(*args, **kwargs)
        self.v = v


class MixInF(object):
    def __init__(self, *args, **kwargs):
        print "IObject:init"
    def f(self, y):
        print "IObject:y[{0}]".format(y)


class B(MixInF):
    def __init__(self, v, *args, **kwargs):
        print "B:init:v[{0}]".format(v)
        kwargs['v']=v
        super(B, self).__init__(*args, **kwargs)
        self.v = v
    def f(self, y):
        print "B:f:v[{0}]:y[{1}]".format(self.v, y)
        super(B, self).f(y)


class C(MixInF):
    def __init__(self, w, *args, **kwargs):
        print "C:init:w[{0}]".format(w)
        kwargs['w']=w
        super(C, self).__init__(*args, **kwargs)
        self.w = w
    def f(self, y):
        print "C:f:w[{0}]:y[{1}]".format(self.w, y)
        super(C, self).f(y)


class Q(C,B,A):
    def __init__(self, v, w):
        super(Q, self).__init__(v=v, w=w)
    def f(self, y):
        print "Q:f:y[{0}]".format(y)
        super(Q, self).f(y)

我想用“无生命”来详细说明这个答案,因为当我开始阅读如何在Python的多重继承层次结构中使用super()时,我并没有立即得到它。

你需要了解的是super(MyClass, self).__init__()在完整继承层次结构的上下文中根据所使用的方法解析排序(MRO)算法提供下一个__init__方法。

理解这最后一部分至关重要。让我们再考虑一下这个例子:

#!/usr/bin/env python2

class First(object):
  def __init__(self):
    print "First(): entering"
    super(First, self).__init__()
    print "First(): exiting"

class Second(object):
  def __init__(self):
    print "Second(): entering"
    super(Second, self).__init__()
    print "Second(): exiting"

class Third(First, Second):
  def __init__(self):
    print "Third(): entering"
    super(Third, self).__init__()
    print "Third(): exiting"

根据Guido van Rossum关于方法解析顺序的文章,解析__init__的顺序是使用“深度优先的从左到右遍历”来计算的(在Python 2.3之前):

Third --> First --> object --> Second --> object

删除所有重复项后,除了最后一个,我们得到:

Third --> First --> Second --> object

那么,让我们来看看当我们实例化一个Third类的实例时会发生什么,例如x = Third()。

According to MRO Third.__init__ executes. prints Third(): entering then super(Third, self).__init__() executes and MRO returns First.__init__ which is called. First.__init__ executes. prints First(): entering then super(First, self).__init__() executes and MRO returns Second.__init__ which is called. Second.__init__ executes. prints Second(): entering then super(Second, self).__init__() executes and MRO returns object.__init__ which is called. object.__init__ executes (no print statements in the code there) execution goes back to Second.__init__ which then prints Second(): exiting execution goes back to First.__init__ which then prints First(): exiting execution goes back to Third.__init__ which then prints Third(): exiting

这详细说明了为什么实例化Third()会导致:

Third(): entering
First(): entering
Second(): entering
Second(): exiting
First(): exiting
Third(): exiting

从Python 2.3开始,MRO算法已经得到了改进,在复杂的情况下工作得很好,但我猜使用“深度优先的从左到右遍历”+“删除除最后一个重复项之外的重复项”在大多数情况下仍然有效(如果不是这样,请评论)。一定要阅读Guido的博客文章!


class First(object):
  def __init__(self, a):
    print "first", a
    super(First, self).__init__(20)

class Second(object):
  def __init__(self, a):
    print "second", a
    super(Second, self).__init__()

class Third(First, Second):
  def __init__(self):
    super(Third, self).__init__(10)
    print "that's it"

t = Third()

输出是

first 10
second 20
that's it

调用Third()定位在Third中定义的init。在这个例程中调用super调用First中定义的init。MRO =(一、二)。 现在在First中定义的init中调用super将继续搜索MRO并找到Second中定义的init,并且任何对super的调用都将命中默认对象init。我希望这个例子能够阐明这个概念。

如果你不在第一分局给管理员打电话。链条停止,您将得到以下输出。

first 10
that's it

关于@calfzhou的评论,你可以像往常一样使用**kwargs:

在线运行示例

class A(object):
  def __init__(self, a, *args, **kwargs):
    print("A", a)

class B(A):
  def __init__(self, b, *args, **kwargs):
    super(B, self).__init__(*args, **kwargs)
    print("B", b)

class A1(A):
  def __init__(self, a1, *args, **kwargs):
    super(A1, self).__init__(*args, **kwargs)
    print("A1", a1)

class B1(A1, B):
  def __init__(self, b1, *args, **kwargs):
    super(B1, self).__init__(*args, **kwargs)
    print("B1", b1)


B1(a1=6, b1=5, b="hello", a=None)

结果:

A None
B hello
A1 6
B1 5

你也可以在不同的位置使用它们:

B1(5, 6, b="hello", a=None)

但你必须记住MRO,它真的很混乱。你可以通过使用关键字参数来避免这种情况:

class A(object):
  def __init__(self, *args, a, **kwargs):
    print("A", a)

等等。

我可能有点烦人,但我注意到人们每次重写一个方法时都会忘记使用*args和**kwargs,而这是这些“神奇变量”为数不多的真正有用和理智的使用之一。


我想补充一下@Visionscaper在开头说的话:

Third --> First --> object --> Second --> object

在这种情况下,解释器不会过滤掉对象类,因为它是重复的,而是因为Second出现在一个层次结构子集的头部位置,而不是尾部位置。而在C3算法中,对象只出现在尾部位置,不被认为是一个强位置来确定优先级。

线性化(mro)的类C, L(C),是

丙类 加上归并 线性化父函数P1, P2, ..= L(P1, P2,… 它的父元素P1, P2, ..

线性化合并是通过选择出现在列表头部而不是尾部的公共类来完成的,因为顺序很重要(下面会清楚地说明)

Third的线性化计算如下:

    L(O)  := [O]  // the linearization(mro) of O(object), because O has no parents

    L(First)  :=  [First] + merge(L(O), [O])
               =  [First] + merge([O], [O])
               =  [First, O]

    // Similarly, 
    L(Second)  := [Second, O]

    L(Third)   := [Third] + merge(L(First), L(Second), [First, Second])
                = [Third] + merge([First, O], [Second, O], [First, Second])
// class First is a good candidate for the first merge step, because it only appears as the head of the first and last lists
// class O is not a good candidate for the next merge step, because it also appears in the tails of list 1 and 2, 
                = [Third, First] + merge([O], [Second, O], [Second])
// class Second is a good candidate for the second merge step, because it appears as the head of the list 2 and 3
                = [Third, First, Second] + merge([O], [O])            
                = [Third, First, Second, O]

因此,对于下面代码中的super()实现:

class First(object):
  def __init__(self):
    super(First, self).__init__()
    print "first"

class Second(object):
  def __init__(self):
    super(Second, self).__init__()
    print "second"

class Third(First, Second):
  def __init__(self):
    super(Third, self).__init__()
    print "that's it"

很明显,这个方法将如何解决

Third.__init__() ---> First.__init__() ---> Second.__init__() ---> 
Object.__init__() ---> returns ---> Second.__init__() -
prints "second" - returns ---> First.__init__() -
prints "first" - returns ---> Third.__init__() - prints "that's it"

整体

假设所有东西都来自object(如果不是你自己的),Python会根据你的类继承树计算一个方法解析顺序(MRO)。MRO满足3个性质:

一个阶层的孩子比他们的父母更重要 左父母先于右父母 一个类在MRO中只出现一次

如果不存在这样的顺序,Python将出错。它的内部工作原理是类祖先的C3线性化。点击这里阅读:https://www.python.org/download/releases/2.3/mro/

当一个方法被调用时,该方法在MRO中第一次出现就是被调用的方法。任何没有实现该方法的类都将被跳过。在该方法中对super的任何调用都将调用MRO中该方法的下一次出现。因此,在继承中放置类的顺序以及在方法中放置super调用的位置都很重要。

注意,你可以通过使用__mro__方法在python中看到MRO。

例子

下面所有的例子都有菱形类继承,如下所示:

    Parent
    /   \
   /     \
Left    Right
   \     /
    \   /
    Child

MRO是:

孩子 左 正确的 父

您可以通过调用Child来测试这一点。__mro__,返回:

(__main__.Child, __main__.Left, __main__.Right, __main__.Parent, object)

每一种方法都以超第一

class Parent(object):
    def __init__(self):
        super(Parent, self).__init__()
        print("parent")

class Left(Parent):
    def __init__(self):
        super(Left, self).__init__()
        print("left")

class Right(Parent):
    def __init__(self):
        super(Right, self).__init__()
        print("right")

class Child(Left, Right):
    def __init__(self):
        super(Child, self).__init__()
        print("child")

孩子()输出:

parent
right
left
child
    

在每个方法中都有超级最后

class Parent(object):
    def __init__(self):
        print("parent")
        super(Parent, self).__init__()

class Left(Parent):
    def __init__(self):
        print("left")
        super(Left, self).__init__()

class Right(Parent):
    def __init__(self):
        print("right")
        super(Right, self).__init__()

class Child(Left, Right):
    def __init__(self):
        print("child")
        super(Child, self).__init__()

孩子()输出:

child
left
right
parent

当不是所有类都调用super时

如果不是继承链中的所有类都调用super,那么继承顺序最重要。例如,如果Left不调用super,那么Right和Parent上的方法永远不会被调用:

class Parent(object):
    def __init__(self):
        print("parent")
        super(Parent, self).__init__()

class Left(Parent):
    def __init__(self):
        print("left")

class Right(Parent):
    def __init__(self):
        print("right")
        super(Right, self).__init__()

class Child(Left, Right):
    def __init__(self):
        print("child")
        super(Child, self).__init__()

孩子()输出:

child
left

或者,如果Right没有调用super, Parent仍然被跳过:

class Parent(object):
    def __init__(self):
        print("parent")
        super(Parent, self).__init__()

class Left(Parent):
    def __init__(self):
        print("left")
        super(Left, self).__init__()

class Right(Parent):
    def __init__(self):
        print("right")

class Child(Left, Right):
    def __init__(self):
        print("child")
        super(Child, self).__init__()

在这里,Child()输出:

child
left
right

调用特定父节点上的方法

如果你想访问一个特定父类的方法,你应该直接引用这个类,而不是使用super。Super是关于遵循继承链,而不是到达特定类的方法。

下面是如何引用一个特定的父方法:

class Parent(object):
    def __init__(self):
        super(Parent, self).__init__()
        print("parent")

class Left(Parent):
    def __init__(self):
        super(Left, self).__init__()
        print("left")

class Right(Parent):
    def __init__(self):
        super(Right, self).__init__()
        print("right")

class Child(Left, Right):
    def __init__(self):
        Parent.__init__(self)
        print("child")

在这种情况下,Child()输出:

parent
child

在学习python的过程中,我学到了一个叫做super()的东西,如果没有弄错的话,这是一个内置函数。调用super()函数可以帮助继承通过父节点和“兄弟节点”传递,并帮助你看得更清楚。我仍然是初学者,但我喜欢分享我在python2.7中使用这个super()的经验。

如果您已经阅读了本页中的注释,您将听说方法解析顺序(MRO),该方法是您编写的函数,MRO将使用深度优先的左至右方案来搜索和运行。你可以做更多的研究。

通过添加super()函数

super(First, self).__init__() #example for class First.

你可以用super()连接多个实例和“家族”,方法是添加其中的每个实例和每个人。它会执行这些方法,检查它们,确保你没有错过!然而,在之前或之后添加它们确实会有区别,你会知道你是否已经通过硬路练习学习了python。让乐趣开始吧!!

以下面的例子为例,你可以复制粘贴并试着运行它:

class First(object):
    def __init__(self):

        print("first")

class Second(First):
    def __init__(self):
        print("second (before)")
        super(Second, self).__init__()
        print("second (after)")

class Third(First):
    def __init__(self):
        print("third (before)")
        super(Third, self).__init__()
        print("third (after)")


class Fourth(First):
    def __init__(self):
        print("fourth (before)")
        super(Fourth, self).__init__()
        print("fourth (after)")


class Fifth(Second, Third, Fourth):
    def __init__(self):
        print("fifth (before)")
        super(Fifth, self).__init__()
        print("fifth (after)")

Fifth()

它是如何运行的?fifth()的实例如下所示。每一步从一个类到另一个类,其中添加了超函数。

1.) print("fifth (before)")
2.) super()>[Second, Third, Fourth] (Left to right)
3.) print("second (before)")
4.) super()> First (First is the Parent which inherit from object)

父母已经找到了,会继续到第三和第四!!

5.) print("third (before)")
6.) super()> First (Parent class)
7.) print ("Fourth (before)")
8.) super()> First (Parent class)

现在所有带有super()的类都已经被访问了!父类已经找到并执行,现在它继续在继承中解箱函数以完成代码。

9.) print("first") (Parent)
10.) print ("Fourth (after)") (Class Fourth un-box)
11.) print("third (after)") (Class Third un-box)
12.) print("second (after)") (Class Second un-box)
13.) print("fifth (after)") (Class Fifth un-box)
14.) Fifth() executed

以上方案的成果:

fifth (before)
second (before
third (before)
fourth (before)
first
fourth (after)
third (after)
second (after)
fifth (after)

对我来说,添加super()可以让我更清楚地看到python如何执行我的代码,并确保继承可以访问我想要的方法。


也许还可以添加一些东西,比如Django rest_framework和装饰器的一个小例子。这为隐含的问题提供了答案:“我为什么想要这个?”

如前所述:我们使用Django rest_framework,我们使用泛型视图,对于数据库中的每种类型的对象,我们发现我们有一个视图类为对象列表提供GET和POST,另一个视图类为单个对象提供GET、PUT和DELETE。

现在我们要用Django的login_required来装饰POST、PUT和DELETE。注意,这涉及到两个类,而不是两个类中的所有方法。

解决方案可以通过多重继承。

from django.utils.decorators import method_decorator
from django.contrib.auth.decorators import login_required

class LoginToPost:
    @method_decorator(login_required)
    def post(self, arg, *args, **kwargs):
        super().post(arg, *args, **kwargs)

其他方法也是如此。

在我的具体类的继承列表,我将添加我的LoginToPost之前ListCreateAPIView和LoginToPutOrDelete之前RetrieveUpdateDestroyAPIView。我的具体类的get将保持未修饰。


在python 3.5+中,继承看起来是可预测的,对我来说非常好。 请看下面的代码:

class Base(object):
  def foo(self):
    print("    Base(): entering")
    print("    Base(): exiting")


class First(Base):
  def foo(self):
    print("   First(): entering Will call Second now")
    super().foo()
    print("   First(): exiting")


class Second(Base):
  def foo(self):
    print("  Second(): entering")
    super().foo()
    print("  Second(): exiting")


class Third(First, Second):
  def foo(self):
    print(" Third(): entering")
    super().foo()
    print(" Third(): exiting")


class Fourth(Third):
  def foo(self):
    print("Fourth(): entering")
    super().foo()
    print("Fourth(): exiting")

Fourth().foo()
print(Fourth.__mro__)

输出:

Fourth(): entering
 Third(): entering
   First(): entering Will call Second now
  Second(): entering
    Base(): entering
    Base(): exiting
  Second(): exiting
   First(): exiting
 Third(): exiting
Fourth(): exiting
(<class '__main__.Fourth'>, <class '__main__.Third'>, <class '__main__.First'>, <class '__main__.Second'>, <class '__main__.Base'>, <class 'object'>)

正如你所看到的,它对每个继承链调用foo一次,其顺序与继承链的顺序相同。你可以通过调用.mro来获得订单:

Fourth -> Third -> First -> Second -> Base ->对象


把这个答案贴出来供我将来参考。

Python多重继承应该使用菱形模型,并且函数签名不应该在模型中更改。

    A
   / \
  B   C
   \ /
    D

示例代码片段为;-

class A:
    def __init__(self, name=None):
        #  this is the head of the diamond, no need to call super() here
        self.name = name

class B(A):
    def __init__(self, param1='hello', **kwargs):
        super().__init__(**kwargs)
        self.param1 = param1

class C(A):
    def __init__(self, param2='bye', **kwargs):
        super().__init__(**kwargs)
        self.param2 = param2

class D(B, C):
    def __init__(self, works='fine', **kwargs):
        super().__init__(**kwargs)
        print(f"{works=}, {self.param1=}, {self.param2=}, {self.name=}")

d = D(name='Testing')

这里类A是对象


考虑从子类调用super(). foo()。方法解析顺序(MRO)方法是解析方法调用的顺序。

案例1:单继承

在这种情况下,super(). foo()将在层次结构中向上搜索,并将考虑最接近的实现,如果找到,否则引发异常。在任何被访问的子类和它在层次结构上的超类之间,“is a”关系将始终为True。但是这个故事在多重继承中并不总是一样的。

案例2:多重继承

在这里,当搜索super(). foo()实现时,层次结构中每个被访问的类都可能是一个关系,也可能不是。考虑以下例子:

class A(object): pass
class B(object): pass
class C(A): pass
class D(A): pass
class E(C, D): pass
class F(B): pass
class G(B): pass
class H(F, G): pass
class I(E, H): pass

这里,I是层次结构中最低的类。层次图和MRO为我将

(红色数字为MRO)

MRO是I E C D A H F G B对象

注意,类X只有在继承自它的所有子类都被访问过的情况下才会被访问。例如,如果一个类下面有一个箭头,而你还没有访问过这个箭头,那么你永远不应该访问这个类)。

在这里,注意在访问类C之后,D被访问,尽管C和D DO NOT have是它们之间的关系(但它们都与a有关系)。这是super()不同于单一继承的地方。

考虑一个稍微复杂一点的例子:

(红色数字为MRO)

MRO是I E C H D A F G B对象

在这种情况下,我们从I到E再到c。下一步是A,但我们还没有访问A的子类D。然而,我们不能访问D,因为我们还没有访问D的子类H。剩下H作为下一个要访问的类。记住,如果可能的话,我们试图在层次结构中向上,所以我们访问它最左边的超类D。在D之后,我们访问A,但我们不能向上到object,因为我们还没有访问F、G和b。这些类,依次,为I完成MRO。

注意,任何类都不能在MRO中出现超过一次。

这就是super()在继承层次结构中的查找方式。

资源来源:Richard L Halterman Python编程基础


在这种情况下,你试图继承的每个类都有自己的init位置参数,只需调用每个类自己的init方法,如果试图继承多个对象,则不要使用super。

class A():
    def __init__(self, x):
        self.x = x

class B():
    def __init__(self, y, z):
        self.y = y
        self.z = z

class C(A, B):
    def __init__(self, x, y, z):
        A.__init__(self, x)
        B.__init__(self, y, z)

>>> c = C(1,2,3)
>>>c.x, c.y, c.z 
(1, 2, 3)

考虑子AB,父A和B在它们的构造函数中有关键字参数。

  A    B
   \  /
    AB

要初始化AB,需要显式调用父类构造函数,而不是使用super()。

例子:

class A():
    def __init__(self, a="a"):
        self.a = a
        print(f"a={a}")
    
    def A_method(self):
        print(f"A_method: {self.a}")

class B():
    def __init__(self, b="b"):
        self.b = b
        print(f"b={b}")
    
    def B_method(self):
        print(f"B_method: {self.b}")
    
    def magical_AB_method(self):
        print(f"magical_AB_method: {self.a}, {self.b}")

class AB(A,B):
    def __init__(self, a="A", b="B"):
        # super().__init__(a=a, b=b) # fails!
        A.__init__(self, a=a)
        B.__init__(self, b=b)
        self.A_method()
        self.B_method()
        self.magical_AB_method()


A()
>>> a=a

B()
>>> b=b

AB()
>>> a=A
>>> b=B
>>> A_method: A
>>> B_method: B

为了演示两个父类被组合到子类中,请考虑在类B中定义的magical_AB_method。当从B的实例调用时,该方法失败,因为它不能访问A中的成员变量。然而,当从子类AB的实例调用时,该方法工作,因为它从A继承了所需的成员变量。

B().magical_AB_method()
>>> AttributeError: 'B' object has no attribute 'a'

AB().magical_AB_method()
>>> magical_AB_method: A, B