super()如何处理多重继承?例如,给定:

class First(object):
    def __init__(self):
        print "first"

class Second(object):
    def __init__(self):
        print "second"

class Third(First, Second):
    def __init__(self):
        super(Third, self).__init__()
        print "that's it"

Third的哪个父方法执行super()。__init__ refer to?我可以选择哪些运行吗?

我知道这与方法解析顺序(MRO)有关。


当前回答

考虑从子类调用super(). foo()。方法解析顺序(MRO)方法是解析方法调用的顺序。

案例1:单继承

在这种情况下,super(). foo()将在层次结构中向上搜索,并将考虑最接近的实现,如果找到,否则引发异常。在任何被访问的子类和它在层次结构上的超类之间,“is a”关系将始终为True。但是这个故事在多重继承中并不总是一样的。

案例2:多重继承

在这里,当搜索super(). foo()实现时,层次结构中每个被访问的类都可能是一个关系,也可能不是。考虑以下例子:

class A(object): pass
class B(object): pass
class C(A): pass
class D(A): pass
class E(C, D): pass
class F(B): pass
class G(B): pass
class H(F, G): pass
class I(E, H): pass

这里,I是层次结构中最低的类。层次图和MRO为我将

(红色数字为MRO)

MRO是I E C D A H F G B对象

注意,类X只有在继承自它的所有子类都被访问过的情况下才会被访问。例如,如果一个类下面有一个箭头,而你还没有访问过这个箭头,那么你永远不应该访问这个类)。

在这里,注意在访问类C之后,D被访问,尽管C和D DO NOT have是它们之间的关系(但它们都与a有关系)。这是super()不同于单一继承的地方。

考虑一个稍微复杂一点的例子:

(红色数字为MRO)

MRO是I E C H D A F G B对象

在这种情况下,我们从I到E再到c。下一步是A,但我们还没有访问A的子类D。然而,我们不能访问D,因为我们还没有访问D的子类H。剩下H作为下一个要访问的类。记住,如果可能的话,我们试图在层次结构中向上,所以我们访问它最左边的超类D。在D之后,我们访问A,但我们不能向上到object,因为我们还没有访问F、G和b。这些类,依次,为I完成MRO。

注意,任何类都不能在MRO中出现超过一次。

这就是super()在继承层次结构中的查找方式。

资源来源:Richard L Halterman Python编程基础

其他回答

关于@calfzhou的评论,你可以像往常一样使用**kwargs:

在线运行示例

class A(object):
  def __init__(self, a, *args, **kwargs):
    print("A", a)

class B(A):
  def __init__(self, b, *args, **kwargs):
    super(B, self).__init__(*args, **kwargs)
    print("B", b)

class A1(A):
  def __init__(self, a1, *args, **kwargs):
    super(A1, self).__init__(*args, **kwargs)
    print("A1", a1)

class B1(A1, B):
  def __init__(self, b1, *args, **kwargs):
    super(B1, self).__init__(*args, **kwargs)
    print("B1", b1)


B1(a1=6, b1=5, b="hello", a=None)

结果:

A None
B hello
A1 6
B1 5

你也可以在不同的位置使用它们:

B1(5, 6, b="hello", a=None)

但你必须记住MRO,它真的很混乱。你可以通过使用关键字参数来避免这种情况:

class A(object):
  def __init__(self, *args, a, **kwargs):
    print("A", a)

等等。

我可能有点烦人,但我注意到人们每次重写一个方法时都会忘记使用*args和**kwargs,而这是这些“神奇变量”为数不多的真正有用和理智的使用之一。

class First(object):
  def __init__(self, a):
    print "first", a
    super(First, self).__init__(20)

class Second(object):
  def __init__(self, a):
    print "second", a
    super(Second, self).__init__()

class Third(First, Second):
  def __init__(self):
    super(Third, self).__init__(10)
    print "that's it"

t = Third()

输出是

first 10
second 20
that's it

调用Third()定位在Third中定义的init。在这个例程中调用super调用First中定义的init。MRO =(一、二)。 现在在First中定义的init中调用super将继续搜索MRO并找到Second中定义的init,并且任何对super的调用都将命中默认对象init。我希望这个例子能够阐明这个概念。

如果你不在第一分局给管理员打电话。链条停止,您将得到以下输出。

first 10
that's it

我知道这并没有直接回答super()问题,但我觉得它有足够的相关性来分享。

还有一种方法可以直接调用每个继承的类:


class First(object):
    def __init__(self):
        print '1'

class Second(object):
    def __init__(self):
        print '2'

class Third(First, Second):
    def __init__(self):
        Second.__init__(self)

请注意,如果你这样做,你将不得不手动调用每个,因为我很确定First的__init__()不会被调用。

考虑子AB,父A和B在它们的构造函数中有关键字参数。

  A    B
   \  /
    AB

要初始化AB,需要显式调用父类构造函数,而不是使用super()。

例子:

class A():
    def __init__(self, a="a"):
        self.a = a
        print(f"a={a}")
    
    def A_method(self):
        print(f"A_method: {self.a}")

class B():
    def __init__(self, b="b"):
        self.b = b
        print(f"b={b}")
    
    def B_method(self):
        print(f"B_method: {self.b}")
    
    def magical_AB_method(self):
        print(f"magical_AB_method: {self.a}, {self.b}")

class AB(A,B):
    def __init__(self, a="A", b="B"):
        # super().__init__(a=a, b=b) # fails!
        A.__init__(self, a=a)
        B.__init__(self, b=b)
        self.A_method()
        self.B_method()
        self.magical_AB_method()


A()
>>> a=a

B()
>>> b=b

AB()
>>> a=A
>>> b=B
>>> A_method: A
>>> B_method: B

为了演示两个父类被组合到子类中,请考虑在类B中定义的magical_AB_method。当从B的实例调用时,该方法失败,因为它不能访问A中的成员变量。然而,当从子类AB的实例调用时,该方法工作,因为它从A继承了所需的成员变量。

B().magical_AB_method()
>>> AttributeError: 'B' object has no attribute 'a'

AB().magical_AB_method()
>>> magical_AB_method: A, B

考虑从子类调用super(). foo()。方法解析顺序(MRO)方法是解析方法调用的顺序。

案例1:单继承

在这种情况下,super(). foo()将在层次结构中向上搜索,并将考虑最接近的实现,如果找到,否则引发异常。在任何被访问的子类和它在层次结构上的超类之间,“is a”关系将始终为True。但是这个故事在多重继承中并不总是一样的。

案例2:多重继承

在这里,当搜索super(). foo()实现时,层次结构中每个被访问的类都可能是一个关系,也可能不是。考虑以下例子:

class A(object): pass
class B(object): pass
class C(A): pass
class D(A): pass
class E(C, D): pass
class F(B): pass
class G(B): pass
class H(F, G): pass
class I(E, H): pass

这里,I是层次结构中最低的类。层次图和MRO为我将

(红色数字为MRO)

MRO是I E C D A H F G B对象

注意,类X只有在继承自它的所有子类都被访问过的情况下才会被访问。例如,如果一个类下面有一个箭头,而你还没有访问过这个箭头,那么你永远不应该访问这个类)。

在这里,注意在访问类C之后,D被访问,尽管C和D DO NOT have是它们之间的关系(但它们都与a有关系)。这是super()不同于单一继承的地方。

考虑一个稍微复杂一点的例子:

(红色数字为MRO)

MRO是I E C H D A F G B对象

在这种情况下,我们从I到E再到c。下一步是A,但我们还没有访问A的子类D。然而,我们不能访问D,因为我们还没有访问D的子类H。剩下H作为下一个要访问的类。记住,如果可能的话,我们试图在层次结构中向上,所以我们访问它最左边的超类D。在D之后,我们访问A,但我们不能向上到object,因为我们还没有访问F、G和b。这些类,依次,为I完成MRO。

注意,任何类都不能在MRO中出现超过一次。

这就是super()在继承层次结构中的查找方式。

资源来源:Richard L Halterman Python编程基础