给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

该算法将rand5的调用次数减少到理论最小值7/5。通过产生接下来的5个rand7数字来调用它7次。

没有任何随机位的拒绝,也不可能一直等待结果。

#!/usr/bin/env ruby

# random integer from 1 to 5
def rand5
    STDERR.putc '.'
    1 + rand( 5 )
end

@bucket = 0
@bucket_size = 0

# random integer from 1 to 7
def rand7
    if @bucket_size == 0
        @bucket = 7.times.collect{ |d| rand5 * 5**d }.reduce( &:+ )
        @bucket_size = 5
    end

    next_rand7 = @bucket%7 + 1

    @bucket      /= 7
    @bucket_size -= 1

    return next_rand7
end

35.times.each{ putc rand7.to_s }

其他回答

为什么不除以5再乘以7,然后四舍五入呢?(当然,你必须使用浮点数no.)

它比其他解决方案更简单、更可靠(真的吗?)例如,在Python中:

def ranndomNo7():
    import random
    rand5 = random.randint(4)    # Produces range: [0, 4]
    rand7 = int(rand5 / 5 * 7)   # /5, *7, +0.5 and floor()
    return rand7

这不是很容易吗?

简单高效:

int rand7 ( void )
{
    return 4; // this number has been calculated using
              // rand5() and is in the range 1..7
}

(灵感来自你最喜欢的“程序员”卡通?)

extern int r5();

int r7() {
    return ((r5() & 0x01) << 2 ) | ((r5() & 0x01) << 1 ) | (r5() & 0x01);
}

我觉得你们都想多了。难道这个简单的解决方案行不通吗?

int rand7(void)
{
    static int startpos = 0;
    startpos = (startpos+5) % (5*7);
    return (((startpos + rand5()-1)%7)+1);
}

这个问题的主要概念是关于正态分布的,这里提供了一个简单的递归解决这个问题的方法

假设我们已经在我们的作用域中有rand5():

def rand7():
    # twoway = 0 or 1 in the same probability
    twoway = None
    while not twoway in (1, 2):
        twoway = rand5()
    twoway -= 1

    ans = rand5() + twoway * 5

    return ans if ans in range(1,8) else rand7()

解释

我们可以把这个程序分成两个部分:

循环rand5()直到我们找到1或2,这意味着我们有1/2的概率在变量中有1或2 复合ans by rand5() + twoway * 5,这正是rand10()的结果,如果这不符合我们的需要(1~7),然后我们再次运行rand7。

附注:我们不能在第二部分直接运行while循环,因为双向的每个概率都需要是单独的。

但是有一个权衡,因为第一部分中的while循环和return语句中的递归,这个函数不能保证执行时间,它实际上是无效的。

结果

我做了一个简单的测试来观察我的答案的分布。

result = [ rand7() for x in xrange(777777) ]

ans = {
    1: 0,
    2: 0,
    3: 0,
    4: 0,
    5: 0,
    6: 0,
    7: 0,
}

for i in result:
    ans[i] += 1

print ans

它给了

{1: 111170, 2: 110693, 3: 110651, 4: 111260, 5: 111197, 6: 111502, 7: 111304}

因此,我们可以知道这个答案是正态分布。

简单的答案

如果你不关心这个函数的执行时间,下面是一个基于我上面给出的答案的简化答案:

def rand7():
    ans = rand5() + (rand5()-1) * 5
    return ans if ans < 8 else rand7()

这增加了大于8的值的概率,但这可能是这个问题的最短答案。