受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

在原地顺时针90度旋转使用矢量矢量..

 #include<iostream>
 #include<vector>
 #include<algorithm>
 using namespace std;
 //Rotate a Matrix by 90 degrees
void rotateMatrix(vector<vector<int> > &matrix){
   int n=matrix.size();
   for(int i=0;i<n;i++){
    for(int j=i+1;j<n;j++){
        swap(matrix[i][j],matrix[j][i]);
    }
 }
     for(int i=0;i<n;i++){
        reverse(matrix[i].begin(),matrix[i].end());
       }
   }

    int main(){

   int n;
   cout<<"enter the size of the matrix:"<<endl;
     while (cin >> n) {
    vector< vector<int> > m;
      cout<<"enter the elements"<<endl;
    for (int i = 0; i < n; i++) {
        m.push_back(vector<int>(n));
        for (int j = 0; j < n; j++)
            scanf("%d", &m[i][j]);
    }
      cout<<"the rotated matrix is:"<<endl;
      rotateMatrix(m);
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++)
            cout << m[i][j] << ' ';
        cout << endl;
    }
   }
   return 0;
 }

其他回答

这是我在C中的就地实现

void rotateRight(int matrix[][SIZE], int length) {

    int layer = 0;

    for (int layer = 0; layer < length / 2; ++layer) {

        int first = layer;
        int last = length - 1 - layer;

        for (int i = first; i < last; ++i) {

            int topline = matrix[first][i];
            int rightcol = matrix[i][last];
            int bottomline = matrix[last][length - layer - 1 - i];
            int leftcol = matrix[length - layer - 1 - i][first];

            matrix[first][i] = leftcol;
            matrix[i][last] = topline;
            matrix[last][length - layer - 1 - i] = rightcol;
            matrix[length - layer - 1 - i][first] = bottomline;
        }
    }
}

Nick的答案也适用于NxM阵列,只需要做一点修改(与NxN相反)。

string[,] orig = new string[n, m];
string[,] rot = new string[m, n];

...

for ( int i=0; i < n; i++ )
  for ( int j=0; j < m; j++ )
    rot[j, n - i - 1] = orig[i, j];

考虑这个问题的一种方法是将轴(0,0)的中心从左上角移动到右上角。你只是简单地从一个转置到另一个。

O(1)内存算法:

旋转最外层的数据,然后你可以得到以下结果: [3] [9] [5] [1] [4] [6] [7] [2] [5] [0] [1] [3] [6] [2] [8] [4]

做这个旋转,我们知道

    dest[j][n-1-i] = src[i][j]

观察下图: A (0,0) -> A (0,3) A (0,3) -> A (3,3) A (3,3) -> A (3,0) A (3,0) -> A (0,0)

因此它是一个圆,你可以在一个循环中旋转N个元素。做这个N-1循环,然后你可以旋转最外层的元素。

对于2X2,内部也是一样的问题。

因此,我们可以得出如下结论:

function rotate(array, N)
{
    Rotate outer-most data
    rotate a new array with N-2 or you can do the similar action following step1
}

ruby方式:.transpose。地图&:反向

private static int[][] rotate(int[][] matrix, int n) {
    int[][] rotated = new int[n][n];
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            rotated[i][j] = matrix[n-j-1][i];
        }
    }
    return rotated;
}