受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
在原地顺时针90度旋转使用矢量矢量..
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
//Rotate a Matrix by 90 degrees
void rotateMatrix(vector<vector<int> > &matrix){
int n=matrix.size();
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
swap(matrix[i][j],matrix[j][i]);
}
}
for(int i=0;i<n;i++){
reverse(matrix[i].begin(),matrix[i].end());
}
}
int main(){
int n;
cout<<"enter the size of the matrix:"<<endl;
while (cin >> n) {
vector< vector<int> > m;
cout<<"enter the elements"<<endl;
for (int i = 0; i < n; i++) {
m.push_back(vector<int>(n));
for (int j = 0; j < n; j++)
scanf("%d", &m[i][j]);
}
cout<<"the rotated matrix is:"<<endl;
rotateMatrix(m);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
cout << m[i][j] << ' ';
cout << endl;
}
}
return 0;
}
其他回答
O(n²)时间和O(1)空间算法(没有任何变通方法和恶作剧的东西!)
旋转+90:
转置 反转每行
旋转-90:
方法一:
转置 反转每一列
方法二:
反转每行 转置
旋转180度:
方法一:旋转+90两次
方法2:反转每行,然后反转每列(转置)
旋转-180度:
方法一:旋转-90度2次
方法二:先反转每一列,再反转每一行
方法三:旋转+180,因为它们是相同的
下面是一个原地旋转的数组,而不是使用一个全新的数组来保存结果。我已经停止了数组的初始化和输出。这只适用于正方形数组,但它们可以是任何大小。内存开销等于数组中一个元素的大小,因此您可以对任意大的数组进行旋转。
int a[4][4];
int n = 4;
int tmp;
for (int i = 0; i < n / 2; i++)
{
for (int j = i; j < n - i - 1; j++)
{
tmp = a[i][j];
a[i][j] = a[j][n-i-1];
a[j][n-i-1] = a[n-i-1][n-j-1];
a[n-i-1][n-j-1] = a[n-j-1][i];
a[n-j-1][i] = tmp;
}
}
这个解决方案不关心正方形或矩形的尺寸,你可以旋转4x5或5x4甚至4x4,它也不关心大小。 注意,这种实现在每次调用rotate90方法时都会创建一个新数组,它根本不会改变原始数组。
public static void main(String[] args) {
int[][] a = new int[][] {
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 0, 1, 2 },
{ 3, 4, 5, 6 },
{ 7, 8, 9, 0 }
};
int[][] rotate180 = rotate90(rotate90(a));
print(rotate180);
}
static int[][] rotate90(int[][] a) {
int[][] ret = new int[a[0].length][a.length];
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a[i].length; j++) {
ret[j][a.length - i - 1] = a[i][j];
}
}
return ret;
}
static void print(int[][] array) {
for (int i = 0; i < array.length; i++) {
System.out.print("[");
for (int j = 0; j < array[i].length; j++) {
System.out.print(array[i][j]);
System.out.print(" ");
}
System.out.println("]");
}
}
在python中:
import numpy as np
a = np.array(
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 0, 1, 2],
[3, 4, 5, 6]
]
)
print(a)
print(b[::-1, :].T)
Python:
rotated = list(zip(*original[::-1]))
和逆时针方向:
rotated_ccw = list(zip(*original))[::-1]
这是如何工作的:
Zip (*original)将通过将列表中的对应项堆叠到新的列表中来交换2d数组的轴。(*操作符告诉函数将包含的列表分布到参数中)
>>> list(zip(*[[1,2,3],[4,5,6],[7,8,9]]))
[[1,4,7],[2,5,8],[3,6,9]]
语句[::-1]反转数组元素(请参阅扩展切片或这个问题):
>>> [[1,2,3],[4,5,6],[7,8,9]][::-1]
[[7,8,9],[4,5,6],[1,2,3]]
最后,将两者结合就得到了旋转变换。
改变[::-1]的位置将使列表在矩阵的不同层次上颠倒。