受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
Nick的答案也适用于NxM阵列,只需要做一点修改(与NxN相反)。
string[,] orig = new string[n, m];
string[,] rot = new string[m, n];
...
for ( int i=0; i < n; i++ )
for ( int j=0; j < m; j++ )
rot[j, n - i - 1] = orig[i, j];
考虑这个问题的一种方法是将轴(0,0)的中心从左上角移动到右上角。你只是简单地从一个转置到另一个。
其他回答
很好的答案,但对于那些正在寻找DRY JavaScript代码的人- +90度和-90度:
// Input: 1 2 3 // 4 5 6 // 7 8 9 // Transpose: // 1 4 7 // 2 5 8 // 3 6 9 // Output: // +90 Degree: // 7 4 1 // 8 5 2 // 9 6 3 // -90 Degree: // 3 6 9 // 2 5 8 // 1 4 7 // Rotate +90 function rotate90(matrix) { matrix = transpose(matrix); matrix.map(function(array) { array.reverse(); }); return matrix; } // Rotate -90 function counterRotate90(matrix) { var result = createEmptyMatrix(matrix.length); matrix = transpose(matrix); var counter = 0; for (var i = matrix.length - 1; i >= 0; i--) { result[counter] = matrix[i]; counter++; } return result; } // Create empty matrix function createEmptyMatrix(len) { var result = new Array(); for (var i = 0; i < len; i++) { result.push([]); } return result; } // Transpose the matrix function transpose(matrix) { // make empty array var len = matrix.length; var result = createEmptyMatrix(len); for (var i = 0; i < matrix.length; i++) { for (var j = 0; j < matrix[i].length; j++) { var temp = matrix[i][j]; result[j][i] = temp; } } return result; } // Test Cases var array1 = [ [1, 2], [3, 4] ]; var array2 = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]; var array3 = [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16] ]; // +90 degress Rotation Tests var test1 = rotate90(array1); var test2 = rotate90(array2); var test3 = rotate90(array3); console.log(test1); console.log(test2); console.log(test3); // -90 degress Rotation Tests var test1 = counterRotate90(array1); var test2 = counterRotate90(array2); var test3 = counterRotate90(array3); console.log(test1); console.log(test2); console.log(test3);
#include <iostream>
#include <iomanip>
using namespace std;
const int SIZE=3;
void print(int a[][SIZE],int);
void rotate(int a[][SIZE],int);
void main()
{
int a[SIZE][SIZE]={{11,22,33},{44,55,66},{77,88,99}};
cout<<"the array befor rotate\n";
print(a,SIZE);
rotate( a,SIZE);
cout<<"the array after rotate\n";
print(a,SIZE);
cout<<endl;
}
void print(int a[][SIZE],int SIZE)
{
int i,j;
for(i=0;i<SIZE;i++)
for(j=0;j<SIZE;j++)
cout<<a[i][j]<<setw(4);
}
void rotate(int a[][SIZE],int SIZE)
{
int temp[3][3],i,j;
for(i=0;i<SIZE;i++)
for(j=0;j<SIZE/2.5;j++)
{
temp[i][j]= a[i][j];
a[i][j]= a[j][SIZE-i-1] ;
a[j][SIZE-i-1] =temp[i][j];
}
}
正如我在上一篇文章中所说的,这里有一些c#代码,可以为任何大小的矩阵实现O(1)矩阵旋转。为了简洁性和可读性,没有错误检查或范围检查。代码:
static void Main (string [] args)
{
int [,]
// create an arbitrary matrix
m = {{0, 1}, {2, 3}, {4, 5}};
Matrix
// create wrappers for the data
m1 = new Matrix (m),
m2 = new Matrix (m),
m3 = new Matrix (m);
// rotate the matricies in various ways - all are O(1)
m1.RotateClockwise90 ();
m2.Rotate180 ();
m3.RotateAnitclockwise90 ();
// output the result of transforms
System.Diagnostics.Trace.WriteLine (m1.ToString ());
System.Diagnostics.Trace.WriteLine (m2.ToString ());
System.Diagnostics.Trace.WriteLine (m3.ToString ());
}
class Matrix
{
enum Rotation
{
None,
Clockwise90,
Clockwise180,
Clockwise270
}
public Matrix (int [,] matrix)
{
m_matrix = matrix;
m_rotation = Rotation.None;
}
// the transformation routines
public void RotateClockwise90 ()
{
m_rotation = (Rotation) (((int) m_rotation + 1) & 3);
}
public void Rotate180 ()
{
m_rotation = (Rotation) (((int) m_rotation + 2) & 3);
}
public void RotateAnitclockwise90 ()
{
m_rotation = (Rotation) (((int) m_rotation + 3) & 3);
}
// accessor property to make class look like a two dimensional array
public int this [int row, int column]
{
get
{
int
value = 0;
switch (m_rotation)
{
case Rotation.None:
value = m_matrix [row, column];
break;
case Rotation.Clockwise90:
value = m_matrix [m_matrix.GetUpperBound (0) - column, row];
break;
case Rotation.Clockwise180:
value = m_matrix [m_matrix.GetUpperBound (0) - row, m_matrix.GetUpperBound (1) - column];
break;
case Rotation.Clockwise270:
value = m_matrix [column, m_matrix.GetUpperBound (1) - row];
break;
}
return value;
}
set
{
switch (m_rotation)
{
case Rotation.None:
m_matrix [row, column] = value;
break;
case Rotation.Clockwise90:
m_matrix [m_matrix.GetUpperBound (0) - column, row] = value;
break;
case Rotation.Clockwise180:
m_matrix [m_matrix.GetUpperBound (0) - row, m_matrix.GetUpperBound (1) - column] = value;
break;
case Rotation.Clockwise270:
m_matrix [column, m_matrix.GetUpperBound (1) - row] = value;
break;
}
}
}
// creates a string with the matrix values
public override string ToString ()
{
int
num_rows = 0,
num_columns = 0;
switch (m_rotation)
{
case Rotation.None:
case Rotation.Clockwise180:
num_rows = m_matrix.GetUpperBound (0);
num_columns = m_matrix.GetUpperBound (1);
break;
case Rotation.Clockwise90:
case Rotation.Clockwise270:
num_rows = m_matrix.GetUpperBound (1);
num_columns = m_matrix.GetUpperBound (0);
break;
}
StringBuilder
output = new StringBuilder ();
output.Append ("{");
for (int row = 0 ; row <= num_rows ; ++row)
{
if (row != 0)
{
output.Append (", ");
}
output.Append ("{");
for (int column = 0 ; column <= num_columns ; ++column)
{
if (column != 0)
{
output.Append (", ");
}
output.Append (this [row, column].ToString ());
}
output.Append ("}");
}
output.Append ("}");
return output.ToString ();
}
int [,]
// the original matrix
m_matrix;
Rotation
// the current view of the matrix
m_rotation;
}
好的,我把手举起来,当旋转时,它实际上不会对原始数组做任何修改。但是,在面向对象系统中,只要对象看起来像是被旋转到类的客户端,这就无关紧要了。目前,Matrix类使用对原始数组数据的引用,因此改变m1的任何值也将改变m2和m3。对构造函数稍加更改,创建一个新数组并将值复制到该数组中,就可以将其整理出来。
在python中:
import numpy as np
a = np.array(
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 0, 1, 2],
[3, 4, 5, 6]
]
)
print(a)
print(b[::-1, :].T)
从线性的角度来看,考虑以下矩阵:
1 2 3 0 0 1
A = 4 5 6 B = 0 1 0
7 8 9 1 0 0
现在求A
1 4 7
A' = 2 5 8
3 6 9
考虑A'对B的作用,或B对A'的作用。 分别为:
7 4 1 3 6 9
A'B = 8 5 2 BA' = 2 5 8
9 6 3 1 4 7
这对任何nxn矩阵都是可展开的。 在代码中快速应用这个概念:
void swapInSpace(int** mat, int r1, int c1, int r2, int c2)
{
mat[r1][c1] ^= mat[r2][c2];
mat[r2][c2] ^= mat[r1][c1];
mat[r1][c1] ^= mat[r2][c2];
}
void transpose(int** mat, int size)
{
for (int i = 0; i < size; i++)
{
for (int j = (i + 1); j < size; j++)
{
swapInSpace(mat, i, j, j, i);
}
}
}
void rotate(int** mat, int size)
{
//Get transpose
transpose(mat, size);
//Swap columns
for (int i = 0; i < size / 2; i++)
{
for (int j = 0; j < size; j++)
{
swapInSpace(mat, i, j, size - (i + 1), j);
}
}
}