受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

这是我对矩阵90度旋转的尝试,这是c中的2步解决方案,首先转置矩阵,然后交换cols。

#define ROWS        5
#define COLS        5

void print_matrix_b(int B[][COLS], int rows, int cols) 
{
    for (int i = 0; i <= rows; i++) {
        for (int j = 0; j <=cols; j++) {
            printf("%d ", B[i][j]);
        }
        printf("\n");
    }
}

void swap_columns(int B[][COLS], int l, int r, int rows)
{
    int tmp;
    for (int i = 0; i <= rows; i++) {
        tmp = B[i][l];
        B[i][l] = B[i][r];
        B[i][r] = tmp;
    }
}


void matrix_2d_rotation(int B[][COLS], int rows, int cols)
{
    int tmp;
    // Transpose the matrix first
    for (int i = 0; i <= rows; i++) {
        for (int j = i; j <=cols; j++) {
            tmp = B[i][j];
            B[i][j] = B[j][i];
            B[j][i] = tmp;
        }
    }
    // Swap the first and last col and continue until
    // the middle.
    for (int i = 0; i < (cols / 2); i++)
        swap_columns(B, i, cols - i, rows);
}



int _tmain(int argc, _TCHAR* argv[])
{
    int B[ROWS][COLS] = { 
                  {1, 2, 3, 4, 5}, 
                      {6, 7, 8, 9, 10},
                          {11, 12, 13, 14, 15},
                          {16, 17, 18, 19, 20},
                          {21, 22, 23, 24, 25}
                        };

    matrix_2d_rotation(B, ROWS - 1, COLS - 1);

    print_matrix_b(B, ROWS - 1, COLS -1);
    return 0;
}

其他回答

这是一个如今被高估的面试问题。

我的建议是:不要让面试官用他们关于解决这个问题的疯狂建议把你弄糊涂了。使用白板绘制输入数组的索引,然后绘制输出数组的索引。旋转前后的列分度示例如下:

30 --> 00
20 --> 01
10 --> 02
00 --> 03

31 --> 10
21 --> 11
11 --> 12
01 --> 13

注意旋转后的数字模式。

下面提供了一个简洁的Java解决方案。经过测试,它是有效的:

 Input:
    M A C P 
    B N L D 
    Y E T S 
    I W R Z 

    Output:
    I Y B M 
    W E N A 
    R T L C 
    Z S D P 

/**
 * (c) @author "G A N MOHIM"
 * Oct 3, 2015
 * RotateArrayNintyDegree.java
 */
package rotatearray;

public class RotateArrayNintyDegree {

    public char[][] rotateArrayNinetyDegree(char[][] input) {
        int k; // k is used to generate index for output array

        char[][] output = new char[input.length] [input[0].length];

        for (int i = 0; i < input.length; i++) {
            k = 0;
            for (int j = input.length-1; j >= 0; j--) {
                output[i][k] = input[j][i]; // note how i is used as column index, and j as row
                k++;
            }
        }

        return output;
    }

    public void printArray(char[][] charArray) {
        for (int i = 0; i < charArray.length; i++) {
            for (int j = 0; j < charArray[0].length; j++) {
                System.out.print(charArray[i][j] + " ");
            }
            System.out.println();
        }


    }

    public static void main(String[] args) {
        char[][] input = 
                { {'M', 'A', 'C', 'P'},
                  {'B', 'N', 'L', 'D'},
                  {'Y', 'E', 'T', 'S'},
                  {'I', 'W', 'R', 'Z'}
                };

        char[][] output = new char[input.length] [input[0].length];

        RotateArrayNintyDegree rotationObj = new RotateArrayNintyDegree();
        rotationObj.printArray(input);

        System.out.println("\n");
        output = rotationObj.rotateArrayNinetyDegree(input);
        rotationObj.printArray(output);

    }

}

在JavaScript中实现dimple的+90伪代码(例如转置然后反转每一行):

function rotate90(a){
  // transpose from http://www.codesuck.com/2012/02/transpose-javascript-array-in-one-line.html
  a = Object.keys(a[0]).map(function (c) { return a.map(function (r) { return r[c]; }); });
  // row reverse
  for (i in a){
    a[i] = a[i].reverse();
  }
  return a;
}

这是Java中的一个更好的版本:我已经为一个具有不同宽度和高度的矩阵制作了它

H是旋转后矩阵的高度 W是旋转后矩阵的宽度

 

public int[][] rotateMatrixRight(int[][] matrix)
{
    /* W and H are already swapped */
    int w = matrix.length;
    int h = matrix[0].length;
    int[][] ret = new int[h][w];
    for (int i = 0; i < h; ++i) {
        for (int j = 0; j < w; ++j) {
            ret[i][j] = matrix[w - j - 1][i];
        }
    }
    return ret;
}


public int[][] rotateMatrixLeft(int[][] matrix)
{
    /* W and H are already swapped */
    int w = matrix.length;
    int h = matrix[0].length;   
    int[][] ret = new int[h][w];
    for (int i = 0; i < h; ++i) {
        for (int j = 0; j < w; ++j) {
            ret[i][j] = matrix[j][h - i - 1];
        }
    }
    return ret;
}

此代码基于Nick Berardi的帖子。

O(1)内存算法:

旋转最外层的数据,然后你可以得到以下结果: [3] [9] [5] [1] [4] [6] [7] [2] [5] [0] [1] [3] [6] [2] [8] [4]

做这个旋转,我们知道

    dest[j][n-1-i] = src[i][j]

观察下图: A (0,0) -> A (0,3) A (0,3) -> A (3,3) A (3,3) -> A (3,0) A (3,0) -> A (0,0)

因此它是一个圆,你可以在一个循环中旋转N个元素。做这个N-1循环,然后你可以旋转最外层的元素。

对于2X2,内部也是一样的问题。

因此,我们可以得出如下结论:

function rotate(array, N)
{
    Rotate outer-most data
    rotate a new array with N-2 or you can do the similar action following step1
}

哦,伙计。我一直认为这是一个“我很无聊,我能思考什么”的谜题。我想出了我的原地换位码,但到了这里发现你的和我的几乎一模一样……啊,好。这里是Ruby版本。

require 'pp'
n = 10
a = []
n.times { a << (1..n).to_a }

pp a

0.upto(n/2-1) do |i|
  i.upto(n-i-2) do |j|
    tmp             = a[i][j]
    a[i][j]         = a[n-j-1][i]
    a[n-j-1][i]     = a[n-i-1][n-j-1]
    a[n-i-1][n-j-1] = a[j][n-i-1]
    a[j][n-i-1]     = tmp
  end
end

pp a