受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

O(n²)时间和O(1)空间算法(没有任何变通方法和恶作剧的东西!)

旋转+90:

转置 反转每行

旋转-90:

方法一:

转置 反转每一列

方法二:

反转每行 转置

旋转180度:

方法一:旋转+90两次

方法2:反转每行,然后反转每列(转置)

旋转-180度:

方法一:旋转-90度2次

方法二:先反转每一列,再反转每一行

方法三:旋转+180,因为它们是相同的

其他回答

这是一个Javascript解决方案:

const transpose = m => m[0].map((x,i) => m.map(x => x[i]));

a: // original matrix
123
456
789

transpose(a).reverse(); // rotate 90 degrees counter clockwise 
369
258
147

transpose(a.slice().reverse()); // rotate 90 degrees clockwise 
741
852
963

transpose(transpose(a.slice().reverse()).slice().reverse())
// rotate 180 degrees 
987
654
321

这是c#的

int[,] array = new int[4,4] {
    { 1,2,3,4 },
    { 5,6,7,8 },
    { 9,0,1,2 },
    { 3,4,5,6 }
};

int[,] rotated = RotateMatrix(array, 4);

static int[,] RotateMatrix(int[,] matrix, int n) {
    int[,] ret = new int[n, n];

    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            ret[i, j] = matrix[n - j - 1, i];
        }
    }

    return ret;
}

这是我的实现,在C, O(1)内存复杂度,原地旋转,顺时针90度:

#include <stdio.h>

#define M_SIZE 5

static void initMatrix();
static void printMatrix();
static void rotateMatrix();

static int m[M_SIZE][M_SIZE];

int main(void){
    initMatrix();
    printMatrix();
    rotateMatrix();
    printMatrix();

    return 0;
}

static void initMatrix(){
    int i, j;

    for(i = 0; i < M_SIZE; i++){
        for(j = 0; j < M_SIZE; j++){
            m[i][j] = M_SIZE*i + j + 1;
        }
    }
}

static void printMatrix(){
    int i, j;

    printf("Matrix\n");
    for(i = 0; i < M_SIZE; i++){
        for(j = 0; j < M_SIZE; j++){
            printf("%02d ", m[i][j]);
        }
        printf("\n");
    }
    printf("\n");
}

static void rotateMatrix(){
    int r, c;

    for(r = 0; r < M_SIZE/2; r++){
        for(c = r; c < M_SIZE - r - 1; c++){
            int tmp = m[r][c];

            m[r][c] = m[M_SIZE - c - 1][r];
            m[M_SIZE - c - 1][r] = m[M_SIZE - r - 1][M_SIZE - c - 1];
            m[M_SIZE - r - 1][M_SIZE - c - 1] = m[c][M_SIZE - r - 1];
            m[c][M_SIZE - r - 1] = tmp;
        }
    }
}

我的c#示例代码的伟大算法发送@dimple:

/* Author: Dudi,
 * http://www.tutorialspoint.com/compile_csharp_online.php?PID=0Bw_CjBb95KQMYm5qU3VjVGNuZFU */

using System.IO;
using System;

class Program
{
    static void Main()
    {
        Console.WriteLine("Rotating this matrix by 90+ degree:");

        int[,] values=new int[3,3]{{1,2,3}, {4,5,6}, {7,8,9}};
        //int[,] values=new int[4,4]{{101,102,103, 104}, {105,106, 107,108}, {109, 110, 111, 112}, {113, 114, 115, 116}};

        print2dArray(ref values);
        transpose2dArray(ref values);
        //print2dArray(ref values);
        reverse2dArray(ref values);
        Console.WriteLine("Output:");
        print2dArray(ref values);
    }

    static void print2dArray(ref int[,] matrix){
        int  nLen = matrix.GetLength(0);
        int  mLen = matrix.GetLength(1);    
        for(int n=0; n<nLen; n++){
            for(int m=0; m<mLen; m++){
                Console.Write(matrix[n,m] +"\t");
            }
            Console.WriteLine();        
        }
        Console.WriteLine();
    }

    static void transpose2dArray(ref int[,] matrix){
        int  nLen = matrix.GetLength(0);
        int  mLen = matrix.GetLength(1);    
        for(int n=0; n<nLen; n++){
            for(int m=0; m<mLen; m++){
                if(n>m){
                    int tmp = matrix[n,m];
                    matrix[n,m] = matrix[m,n];
                    matrix[m,n] = tmp;
                }
            }
        }
    }

    static void reverse2dArray(ref int[,] matrix){
        int  nLen = matrix.GetLength(0);
        int  mLen = matrix.GetLength(1);
        for(int n=0; n<nLen; n++){
            for(int m=0; m<mLen/2; m++){                
                int tmp = matrix[n,m];
                matrix[n,m] = matrix[n, mLen-1-m];
                matrix[n,mLen-1-m] = tmp;
            }
        }
    }
}

/*
Rotating this matrix by 90+ degree:                                                                                                                                             
1       2       3                                                                                                                                                               
4       5       6                                                                                                                                                               
7       8       9                                                                                                                                                               

Output:                                                                                                                                                                         
7       4       1                                                                                                                                                               
8       5       2                                                                                                                                                               
9       6       3  
*/

下面是我的Ruby版本(注意,值显示的不一样,但它仍然按照描述旋转)。

def rotate(matrix)
  result = []
  4.times { |x|
    result[x] = []
    4.times { |y|
      result[x][y] = matrix[y][3 - x]
    }
  }

  result
end

matrix = []
matrix[0] = [1,2,3,4]
matrix[1] = [5,6,7,8]
matrix[2] = [9,0,1,2]
matrix[3] = [3,4,5,6]

def print_matrix(matrix)
  4.times { |y|
    4.times { |x|
      print "#{matrix[x][y]} "
    }
    puts ""
  }
end

print_matrix(matrix)
puts ""
print_matrix(rotate(matrix))

输出:

1 5 9 3 
2 6 0 4 
3 7 1 5 
4 8 2 6 

4 3 2 1 
8 7 6 5 
2 1 0 9 
6 5 4 3