受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
这是将数组旋转90度的简单C代码。希望这能有所帮助。
#include <stdio.h>
void main(){
int arr[3][4] = {85, 2, 85, 4,
85, 6, 7, 85,
9, 85, 11, 12};
int arr1[4][3];
int i = 0, j = 0;
for(i=0;i<4;i++){
int k = 2;//k = (number of columns in the new array arr1 - 1)
for(j=0;j<3;j++){
arr1[i][j]=arr[k][i];
k--;
}
}
int l, m;
for(l=0;l<4;l++){
for(m=0;m<3;m++){
printf("%d ", arr1[l][m]);
}
printf("\n");
}
}//end main
其他回答
O(n²)时间和O(1)空间算法(没有任何变通方法和恶作剧的东西!)
旋转+90:
转置 反转每行
旋转-90:
方法一:
转置 反转每一列
方法二:
反转每行 转置
旋转180度:
方法一:旋转+90两次
方法2:反转每行,然后反转每列(转置)
旋转-180度:
方法一:旋转-90度2次
方法二:先反转每一列,再反转每一行
方法三:旋转+180,因为它们是相同的
Nick的答案也适用于NxM阵列,只需要做一点修改(与NxN相反)。
string[,] orig = new string[n, m];
string[,] rot = new string[m, n];
...
for ( int i=0; i < n; i++ )
for ( int j=0; j < m; j++ )
rot[j, n - i - 1] = orig[i, j];
考虑这个问题的一种方法是将轴(0,0)的中心从左上角移动到右上角。你只是简单地从一个转置到另一个。
Python:
rotated = list(zip(*original[::-1]))
和逆时针方向:
rotated_ccw = list(zip(*original))[::-1]
这是如何工作的:
Zip (*original)将通过将列表中的对应项堆叠到新的列表中来交换2d数组的轴。(*操作符告诉函数将包含的列表分布到参数中)
>>> list(zip(*[[1,2,3],[4,5,6],[7,8,9]]))
[[1,4,7],[2,5,8],[3,6,9]]
语句[::-1]反转数组元素(请参阅扩展切片或这个问题):
>>> [[1,2,3],[4,5,6],[7,8,9]][::-1]
[[7,8,9],[4,5,6],[1,2,3]]
最后,将两者结合就得到了旋转变换。
改变[::-1]的位置将使列表在矩阵的不同层次上颠倒。
O(1)内存算法:
旋转最外层的数据,然后你可以得到以下结果: [3] [9] [5] [1] [4] [6] [7] [2] [5] [0] [1] [3] [6] [2] [8] [4]
做这个旋转,我们知道
dest[j][n-1-i] = src[i][j]
观察下图: A (0,0) -> A (0,3) A (0,3) -> A (3,3) A (3,3) -> A (3,0) A (3,0) -> A (0,0)
因此它是一个圆,你可以在一个循环中旋转N个元素。做这个N-1循环,然后你可以旋转最外层的元素。
对于2X2,内部也是一样的问题。
因此,我们可以得出如下结论:
function rotate(array, N)
{
Rotate outer-most data
rotate a new array with N-2 or you can do the similar action following step1
}
时间- O(N),空间- O(1)
public void rotate(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < n / 2; i++) {
int last = n - 1 - i;
for (int j = i; j < last; j++) {
int top = matrix[i][j];
matrix[i][j] = matrix[last - j][i];
matrix[last - j][i] = matrix[last][last - j];
matrix[last][last - j] = matrix[j][last];
matrix[j][last] = top;
}
}
}