受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

这是将数组旋转90度的简单C代码。希望这能有所帮助。

#include <stdio.h>

void main(){
int arr[3][4] =     {85, 2, 85,  4,
                     85, 6,  7, 85,
                     9, 85, 11, 12};


int arr1[4][3];

int i = 0, j = 0;

for(i=0;i<4;i++){
int k = 2;//k = (number of columns in the new array arr1 - 1)
for(j=0;j<3;j++){
arr1[i][j]=arr[k][i];
k--;
}
}

int l, m;
for(l=0;l<4;l++){
for(m=0;m<3;m++){
printf("%d ", arr1[l][m]);
}
printf("\n");
}
}//end main

其他回答

Javascript解决NxN矩阵与运行时O(N^2)和内存O(1)

  function rotate90(matrix){
    var length = matrix.length
    for(var row = 0; row < (length / 2); row++){
      for(var col = row; col < ( length - 1 - row); col++){
        var tmpVal = matrix[row][col];
        for(var i = 0; i < 4; i++){
          var rowSwap = col;
          var colSwap = (length - 1) - row;
          var poppedVal = matrix[rowSwap][colSwap];
          matrix[rowSwap][colSwap] = tmpVal;
          tmpVal = poppedVal;
          col = colSwap;
          row = rowSwap;
        }
      }
    }
  }

这是c#的

int[,] array = new int[4,4] {
    { 1,2,3,4 },
    { 5,6,7,8 },
    { 9,0,1,2 },
    { 3,4,5,6 }
};

int[,] rotated = RotateMatrix(array, 4);

static int[,] RotateMatrix(int[,] matrix, int n) {
    int[,] ret = new int[n, n];

    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            ret[i, j] = matrix[n - j - 1, i];
        }
    }

    return ret;
}

#转置是Ruby的Array类的标准方法,因此:

% irb
irb(main):001:0> m = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]
=> [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]] 
irb(main):002:0> m.reverse.transpose
=> [[3, 9, 5, 1], [4, 0, 6, 2], [5, 1, 7, 3], [6, 2, 8, 4]]

实现是一个用c写的n^2转置函数,你可以在这里看到: http://www.ruby-doc.org/core-1.9.3/Array.html#method-i-transpose 通过选择“点击切换源”旁边的“转置”。

我记得比O(n^2)的解更好,但只适用于特殊构造的矩阵(如稀疏矩阵)

虽然旋转数据可能是必要的(也许是为了更新物理存储的表示),但在数组访问上添加一层间接层(也许是一个接口)会变得更简单,可能更性能:

interface IReadableMatrix
{
    int GetValue(int x, int y);
}

如果你的矩阵已经实现了这个接口,那么它可以通过这样一个装饰器类来旋转:

class RotatedMatrix : IReadableMatrix
{
    private readonly IReadableMatrix _baseMatrix;

    public RotatedMatrix(IReadableMatrix baseMatrix)
    {
        _baseMatrix = baseMatrix;
    }

    int GetValue(int x, int y)
    {
        // transpose x and y dimensions
        return _baseMatrix(y, x);
    }
}

旋转+90/-90/180度,水平/垂直翻转和缩放都可以以这种方式实现。

Performance would need to be measured in your specific scenario. However the O(n^2) operation has now been replaced with an O(1) call. It's a virtual method call which is slower than direct array access, so it depends upon how frequently the rotated array is used after rotation. If it's used once, then this approach would definitely win. If it's rotated then used in a long-running system for days, then in-place rotation might perform better. It also depends whether you can accept the up-front cost.

与所有性能问题一样,测量,测量,测量!

下面是PHP的递归方法:

$m = array();
            $m[0] = array('a', 'b', 'c');
            $m[1] = array('d', 'e', 'f');
            $m[2] = array('g', 'h', 'i');
            $newMatrix = array();

            function rotateMatrix($m, $i = 0, &$newMatrix)
            {
                foreach ($m as $chunk) {
                    $newChunk[] = $chunk[$i];
                }
                $newMatrix[] = array_reverse($newChunk);
                $i++;

                if ($i < count($m)) {
                    rotateMatrix($m, $i, $newMatrix);
                }
            }

            rotateMatrix($m, 0, $newMatrix);
            echo '<pre>';
            var_dump($newMatrix);
            echo '<pre>';