受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

为新手程序员,在纯c++。(宝蓝的东西)

#include<iostream.h>
#include<conio.h>

int main()
{
    clrscr();

    int arr[10][10];        // 2d array that holds input elements 
    int result[10][10];     //holds result

    int m,n;                //rows and columns of arr[][]
    int x,y;                //rows and columns of result[][]

    int i,j;                //loop variables
    int t;                  //temporary , holds data while conversion

    cout<<"Enter no. of rows and columns of array: ";
    cin>>m>>n;
    cout<<"\nEnter elements of array: \n\n";
    for(i = 0; i < m; i++)
    {
        for(j = 0; j<n ; j++)
        {
          cin>>arr[i][j];         // input array elements from user
        }
    }


   //rotating matrix by +90 degrees

    x = n ;                      //for non-square matrix
    y = m ;     

    for(i = 0; i < x; i++)
    {  t = m-1;                     // to create required array bounds
       for(j = 0; j < y; j++)
       {
          result[i][j] = arr[t][i];
          t--;
       }
   }

   //print result

   cout<<"\nRotated matrix is: \n\n";
   for(i = 0; i < x; i++)
   {
       for(j = 0; j < y; j++)
       {
             cout<<result[i][j]<<" ";
       }
       cout<<"\n";
   }

   getch();
   return 0;
}

其他回答

在Eigen (c++)中:

Eigen::Matrix2d mat;
mat <<  1, 2,
        3, 4;
std::cout << mat << "\n\n";

Eigen::Matrix2d r_plus_90 = mat.transpose().rowwise().reverse();
std::cout << r_plus_90 << "\n\n";

Eigen::Matrix2d r_minus_90 = mat.transpose().colwise().reverse();
std::cout << r_minus_90 << "\n\n";

Eigen::Matrix2d r_180 = mat.colwise().reverse().rowwise().reverse(); // +180 same as -180
std::cout << r_180 << "\n\n";

输出:

1 2
3 4

3 1
4 2

2 4
1 3

4 3
2 1

这里有大量的好代码,但我只是想以几何形式展示,这样你就能更好地理解代码逻辑。以下是我的处理方法。

首先,不要把这和换位相混淆,换位是很容易的。

基本的想法是把它当作层,我们一次旋转一个层。

假设我们有一辆4x4

1   2   3   4
5   6   7   8
9   10  11  12
13  14  15  16

当我们顺时针旋转90度,我们得到

13  9   5   1
14  10  6   2   
15  11  7   3
16  12  8   4

我们来分解它,首先旋转这四个角

1           4


13          16

然后我们旋转下面这个有点歪斜的菱形

    2
            8
9       
        15

然后是第二个斜菱形

        3
5           
            12
    14

这就搞定了外缘基本上我们一次做一个壳层直到

最后是中间的方块(如果是奇数则是最后一个不动的元素)

6   7
10  11

现在我们来算出每一层的指标,假设我们总是在最外层工作,我们正在做

[0,0] -> [0,n-1], [0,n-1] -> [n-1,n-1], [n-1,n-1] -> [n-1,0], and [n-1,0] -> [0,0]
[0,1] -> [1,n-1], [1,n-2] -> [n-1,n-2], [n-1,n-2] -> [n-2,0], and [n-2,0] -> [0,1]
[0,2] -> [2,n-2], [2,n-2] -> [n-1,n-3], [n-1,n-3] -> [n-3,0], and [n-3,0] -> [0,2]

等等等等 直到我们走到边缘的一半

所以总的来说模式是

[0,i] -> [i,n-i], [i,n-i] -> [n-1,n-(i+1)], [n-1,n-(i+1)] -> [n-(i+1),0], and [n-(i+1),0] to [0,i]

时间- O(N),空间- O(1)

public void rotate(int[][] matrix) {
    int n = matrix.length;
    for (int i = 0; i < n / 2; i++) {
        int last = n - 1 - i;
        for (int j = i; j < last; j++) {
            int top = matrix[i][j];
            matrix[i][j] = matrix[last - j][i];
            matrix[last - j][i] = matrix[last][last - j];
            matrix[last][last - j] = matrix[j][last];
            matrix[j][last] = top;
        }
    }
}

这个解决方案不关心正方形或矩形的尺寸,你可以旋转4x5或5x4甚至4x4,它也不关心大小。 注意,这种实现在每次调用rotate90方法时都会创建一个新数组,它根本不会改变原始数组。

public static void main(String[] args) {
    int[][] a = new int[][] { 
                    { 1, 2, 3, 4 }, 
                    { 5, 6, 7, 8 }, 
                    { 9, 0, 1, 2 }, 
                    { 3, 4, 5, 6 }, 
                    { 7, 8, 9, 0 } 
                  };
    int[][] rotate180 = rotate90(rotate90(a));
    print(rotate180);
}

static int[][] rotate90(int[][] a) {
    int[][] ret = new int[a[0].length][a.length];
    for (int i = 0; i < a.length; i++) {
        for (int j = 0; j < a[i].length; j++) {
            ret[j][a.length - i - 1] = a[i][j];
        }
    }
    return ret;
}

static void print(int[][] array) {
    for (int i = 0; i < array.length; i++) {
        System.out.print("[");
        for (int j = 0; j < array[i].length; j++) {
            System.out.print(array[i][j]);
            System.out.print(" ");
        }
        System.out.println("]");
    }
}
    public static void rotateMatrix(int[,] matrix)
    {
        //C#, to rotate an N*N matrix in place
        int n = matrix.GetLength(0);
        int layers =  n / 2;
        int temp, temp2;

        for (int i = 0; i < layers; i++) // for a 5 * 5 matrix, layers will be 2, since at layer three there would be only one element, (2,2), and we do not need to rotate it with itself 
        {
            int offset = 0;
            while (offset < n - 2 * i - 1)
            {
                // top right <- top left 
                temp = matrix[i + offset, n - i - 1]; //top right value when offset is zero
                matrix[i + offset, n - i - 1] = matrix[i, i + offset];   

                //bottom right <- top right 
                temp2 = matrix[n - i - 1, n - i - 1 - offset]; //bottom right value when offset is zero
                matrix[n - i - 1, n - i - 1 - offset] = temp;  

                //bottom left <- bottom right 
                temp = matrix[n - i - 1 - offset, i];
                matrix[n - i - 1 - offset, i] = temp2;  

                //top left <- bottom left 
                matrix[i, i + offset] = temp; 

                offset++;
            }
        }
    }