受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

这个解决方案不关心正方形或矩形的尺寸,你可以旋转4x5或5x4甚至4x4,它也不关心大小。 注意,这种实现在每次调用rotate90方法时都会创建一个新数组,它根本不会改变原始数组。

public static void main(String[] args) {
    int[][] a = new int[][] { 
                    { 1, 2, 3, 4 }, 
                    { 5, 6, 7, 8 }, 
                    { 9, 0, 1, 2 }, 
                    { 3, 4, 5, 6 }, 
                    { 7, 8, 9, 0 } 
                  };
    int[][] rotate180 = rotate90(rotate90(a));
    print(rotate180);
}

static int[][] rotate90(int[][] a) {
    int[][] ret = new int[a[0].length][a.length];
    for (int i = 0; i < a.length; i++) {
        for (int j = 0; j < a[i].length; j++) {
            ret[j][a.length - i - 1] = a[i][j];
        }
    }
    return ret;
}

static void print(int[][] array) {
    for (int i = 0; i < array.length; i++) {
        System.out.print("[");
        for (int j = 0; j < array[i].length; j++) {
            System.out.print(array[i][j]);
            System.out.print(" ");
        }
        System.out.println("]");
    }
}

其他回答

为新手程序员,在纯c++。(宝蓝的东西)

#include<iostream.h>
#include<conio.h>

int main()
{
    clrscr();

    int arr[10][10];        // 2d array that holds input elements 
    int result[10][10];     //holds result

    int m,n;                //rows and columns of arr[][]
    int x,y;                //rows and columns of result[][]

    int i,j;                //loop variables
    int t;                  //temporary , holds data while conversion

    cout<<"Enter no. of rows and columns of array: ";
    cin>>m>>n;
    cout<<"\nEnter elements of array: \n\n";
    for(i = 0; i < m; i++)
    {
        for(j = 0; j<n ; j++)
        {
          cin>>arr[i][j];         // input array elements from user
        }
    }


   //rotating matrix by +90 degrees

    x = n ;                      //for non-square matrix
    y = m ;     

    for(i = 0; i < x; i++)
    {  t = m-1;                     // to create required array bounds
       for(j = 0; j < y; j++)
       {
          result[i][j] = arr[t][i];
          t--;
       }
   }

   //print result

   cout<<"\nRotated matrix is: \n\n";
   for(i = 0; i < x; i++)
   {
       for(j = 0; j < y; j++)
       {
             cout<<result[i][j]<<" ";
       }
       cout<<"\n";
   }

   getch();
   return 0;
}

下面是一个c#静态泛型方法,它可以为您完成这项工作。变量的名称很好,所以您可以很容易地理解算法的思想。

private static T[,] Rotate180 <T> (T[,] matrix)
{
    var height = matrix.GetLength (0);
    var width = matrix.GetLength (1);
    var answer = new T[height, width];

    for (int y = 0; y < height / 2; y++)
    {
        int topY = y;
        int bottomY = height - 1 - y;
        for (int topX = 0; topX < width; topX++)
        {
            var bottomX = width - topX - 1;
            answer[topY, topX] = matrix[bottomY, bottomX];
            answer[bottomY, bottomX] = matrix[topY, topX];
        }
    }

    if (height % 2 == 0)
        return answer;

    var centerY = height / 2;
    for (int leftX = 0; leftX < Mathf.CeilToInt(width / 2f); leftX++)
    {
        var rightX = width - 1 - leftX;
        answer[centerY, leftX] = matrix[centerY, rightX];
        answer[centerY, rightX] = matrix[centerY, leftX];
    }

    return answer;
}

一些人已经举了一些例子,其中涉及到创建一个新数组。

还有一些需要考虑的事情:

(a)不实际移动数据,只需以不同的方式遍历“旋转”的数组。

(b)就地轮换可能有点棘手。您需要一点空白的地方(大概相当于一行或一列的大小)。有一篇古老的ACM论文是关于进行原地转置的(http://doi.acm.org/10.1145/355719.355729),但是他们的示例代码是令人讨厌的充满goto的FORTRAN。

附录:

http://doi.acm.org/10.1145/355611.355612是另一种更优越的就地转置算法。

#!/usr/bin/env python

original = [ [1,2,3],
             [4,5,6],
             [7,8,9] ]

# Rotate matrix 90 degrees...
for i in map(None,*original[::-1]):
    print str(i) + '\n'

这导致双方旋转90度(即。123(上面)现在是741(左边)。

这个Python解决方案是可行的,因为它使用了带负步的切片来反转行顺序(将7移到最上面)

original = [ [7,8,9],
             [4,5,6],
             [1,2,3] ]

然后,它使用map(以及隐含的标识函数,这是map以None作为第一个参数的结果)和*按顺序解包所有元素,重新组合列(即。第一个元素一起放在一个元组中,第二个元素一起放在一个元组中,以此类推)。你有效地得到得到返回如下重组:

original = [[7,8,9],
             [4,5,6],
             [1,2,3]]

基于大量的其他答案,我用c#想出了这个:

/// <param name="rotation">The number of rotations (if negative, the <see cref="Matrix{TValue}"/> is rotated counterclockwise; 
/// otherwise, it's rotated clockwise). A single (positive) rotation is equivalent to 90° or -270°; a single (negative) rotation is 
/// equivalent to -90° or 270°. Matrices may be rotated by 90°, 180°, or 270° only (or multiples thereof).</param>
/// <returns></returns>
public Matrix<TValue> Rotate(int rotation)
{
    var result = default(Matrix<TValue>);

    //This normalizes the requested rotation (for instance, if 10 is specified, the rotation is actually just +-2 or +-180°, but all 
    //correspond to the same rotation).
    var d = rotation.ToDouble() / 4d;
    d = d - (int)d;

    var degree = (d - 1d) * 4d;

    //This gets the type of rotation to make; there are a total of four unique rotations possible (0°, 90°, 180°, and 270°).
    //Each correspond to 0, 1, 2, and 3, respectively (or 0, -1, -2, and -3, if in the other direction). Since
    //1 is equivalent to -3 and so forth, we combine both cases into one. 
    switch (degree)
    {
        case -3:
        case +1:
            degree = 3;
            break;
        case -2:
        case +2:
            degree = 2;
            break;
        case -1:
        case +3:
            degree = 1;
            break;
        case -4:
        case  0:
        case +4:
            degree = 0;
            break;
    }
    switch (degree)
    {
        //The rotation is 0, +-180°
        case 0:
        case 2:
            result = new TValue[Rows, Columns];
            break;
        //The rotation is +-90°
        case 1:
        case 3:
            result = new TValue[Columns, Rows];
            break;
    }

    for (uint i = 0; i < Columns; ++i)
    {
        for (uint j = 0; j < Rows; ++j)
        {
            switch (degree)
            {
                //If rotation is 0°
                case 0:
                    result._values[j][i] = _values[j][i];
                    break;
                //If rotation is -90°
                case 1:
                    //Transpose, then reverse each column OR reverse each row, then transpose
                    result._values[i][j] = _values[j][Columns - i - 1];
                    break;
                //If rotation is +-180°
                case 2:
                    //Reverse each column, then reverse each row
                    result._values[(Rows - 1) - j][(Columns - 1) - i] = _values[j][i];
                    break;
                //If rotation is +90°
                case 3:
                    //Transpose, then reverse each row
                    result._values[i][j] = _values[Rows - j - 1][i];
                    break;
            }
        }
    }
    return result;
}

其中_values对应于由Matrix<TValue>定义的私有二维数组(形式为[][])。result = new TValue[Columns, Rows]可能通过隐式操作符重载并将二维数组转换为Matrix<TValue>。 Columns和Rows两个属性是公共属性,用于获取当前实例的列数和行数:

public uint Columns 
    => (uint)_values[0].Length;

public uint Rows 
    => (uint)_values.Length;

当然,假设您更喜欢使用无符号下标;-)

所有这些都允许您指定它应该旋转多少次,以及它应该向左旋转(如果小于零)还是向右旋转(如果大于零)。您可以改进此方法,以检查实际角度的旋转,但如果值不是90的倍数,则可能会抛出异常。有了这些输入,你可以相应地改变方法:

public Matrix<TValue> Rotate(int rotation)
{
    var _rotation = (double)rotation / 90d;

    if (_rotation - Math.Floor(_rotation) > 0)
    {
        throw new NotSupportedException("A matrix may only be rotated by multiples of 90.").
    }

    rotation = (int)_rotation;
    ...
}

Since a degree is more accurately expressed by double than int, but a matrix can only rotate in multiples of 90, it is far more intuitive to make the argument correspond to something else that can be accurately represented by the data structure used. int is perfect because it can tell you how many times to rotate it up to a certain unit (90) as well as the direction. double may very well be able to tell you that also, but it also includes values that aren't supported by this operation (which is inherently counter-intuitive).