受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

PHP:

<?php    
$a = array(array(1,2,3,4),array(5,6,7,8),array(9,0,1,2),array(3,4,5,6));
$b = array(); //result

while(count($a)>0)
{
    $b[count($a[0])-1][] = array_shift($a[0]);
    if (count($a[0])==0)
    {
         array_shift($a);
    }
}

从PHP5.6开始,数组转位可以通过一个狡猾的array_map()调用来执行。换句话说,列被转换为行。

代码:(演示)

$array = [
    [1, 2, 3, 4],
    [5, 6, 7, 8],
    [9, 0, 1, 2],
    [3, 4, 5, 6]
];
$transposed = array_map(null, ...$array);

美元转置:

[
    [1, 5, 9, 3],
    [2, 6, 0, 4],
    [3, 7, 1, 5],
    [4, 8, 2, 6]
]

其他回答

这是我在C中的就地实现

void rotateRight(int matrix[][SIZE], int length) {

    int layer = 0;

    for (int layer = 0; layer < length / 2; ++layer) {

        int first = layer;
        int last = length - 1 - layer;

        for (int i = first; i < last; ++i) {

            int topline = matrix[first][i];
            int rightcol = matrix[i][last];
            int bottomline = matrix[last][length - layer - 1 - i];
            int leftcol = matrix[length - layer - 1 - i][first];

            matrix[first][i] = leftcol;
            matrix[i][last] = topline;
            matrix[last][length - layer - 1 - i] = rightcol;
            matrix[length - layer - 1 - i][first] = bottomline;
        }
    }
}
#include <iostream>
#include <iomanip>

using namespace std;
const int SIZE=3;
void print(int a[][SIZE],int);
void rotate(int a[][SIZE],int);

void main()
{
    int a[SIZE][SIZE]={{11,22,33},{44,55,66},{77,88,99}};
    cout<<"the array befor rotate\n";

    print(a,SIZE);
    rotate( a,SIZE);
    cout<<"the array after rotate\n";
    print(a,SIZE);
    cout<<endl;

}

void print(int a[][SIZE],int SIZE)
{
    int i,j;
    for(i=0;i<SIZE;i++)
       for(j=0;j<SIZE;j++)
          cout<<a[i][j]<<setw(4);
}

void rotate(int a[][SIZE],int SIZE)
{
    int temp[3][3],i,j;
    for(i=0;i<SIZE;i++)
       for(j=0;j<SIZE/2.5;j++)
       {
           temp[i][j]= a[i][j];
           a[i][j]= a[j][SIZE-i-1] ;
           a[j][SIZE-i-1] =temp[i][j];

       }
}

虽然旋转数据可能是必要的(也许是为了更新物理存储的表示),但在数组访问上添加一层间接层(也许是一个接口)会变得更简单,可能更性能:

interface IReadableMatrix
{
    int GetValue(int x, int y);
}

如果你的矩阵已经实现了这个接口,那么它可以通过这样一个装饰器类来旋转:

class RotatedMatrix : IReadableMatrix
{
    private readonly IReadableMatrix _baseMatrix;

    public RotatedMatrix(IReadableMatrix baseMatrix)
    {
        _baseMatrix = baseMatrix;
    }

    int GetValue(int x, int y)
    {
        // transpose x and y dimensions
        return _baseMatrix(y, x);
    }
}

旋转+90/-90/180度,水平/垂直翻转和缩放都可以以这种方式实现。

Performance would need to be measured in your specific scenario. However the O(n^2) operation has now been replaced with an O(1) call. It's a virtual method call which is slower than direct array access, so it depends upon how frequently the rotated array is used after rotation. If it's used once, then this approach would definitely win. If it's rotated then used in a long-running system for days, then in-place rotation might perform better. It also depends whether you can accept the up-front cost.

与所有性能问题一样,测量,测量,测量!

C代码的矩阵旋转90度顺时针在任何M*N矩阵的地方

void rotateInPlace(int * arr[size][size], int row, int column){
    int i, j;
    int temp = row>column?row:column;
    int flipTill = row < column ? row : column;
    for(i=0;i<flipTill;i++){
        for(j=0;j<i;j++){
            swapArrayElements(arr, i, j);
        }
    }

    temp = j+1;

    for(i = row>column?i:0; i<row; i++){
            for(j=row<column?temp:0; j<column; j++){
                swapArrayElements(arr, i, j);
            }
    }

    for(i=0;i<column;i++){
        for(j=0;j<row/2;j++){
            temp = arr[i][j];
            arr[i][j] = arr[i][row-j-1];
            arr[i][row-j-1] = temp;
        }
    }
}

O(1)内存算法:

旋转最外层的数据,然后你可以得到以下结果: [3] [9] [5] [1] [4] [6] [7] [2] [5] [0] [1] [3] [6] [2] [8] [4]

做这个旋转,我们知道

    dest[j][n-1-i] = src[i][j]

观察下图: A (0,0) -> A (0,3) A (0,3) -> A (3,3) A (3,3) -> A (3,0) A (3,0) -> A (0,0)

因此它是一个圆,你可以在一个循环中旋转N个元素。做这个N-1循环,然后你可以旋转最外层的元素。

对于2X2,内部也是一样的问题。

因此,我们可以得出如下结论:

function rotate(array, N)
{
    Rotate outer-most data
    rotate a new array with N-2 or you can do the similar action following step1
}