受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

ruby方式:.transpose。地图&:反向

其他回答

这是Java中的一个更好的版本:我已经为一个具有不同宽度和高度的矩阵制作了它

H是旋转后矩阵的高度 W是旋转后矩阵的宽度

 

public int[][] rotateMatrixRight(int[][] matrix)
{
    /* W and H are already swapped */
    int w = matrix.length;
    int h = matrix[0].length;
    int[][] ret = new int[h][w];
    for (int i = 0; i < h; ++i) {
        for (int j = 0; j < w; ++j) {
            ret[i][j] = matrix[w - j - 1][i];
        }
    }
    return ret;
}


public int[][] rotateMatrixLeft(int[][] matrix)
{
    /* W and H are already swapped */
    int w = matrix.length;
    int h = matrix[0].length;   
    int[][] ret = new int[h][w];
    for (int i = 0; i < h; ++i) {
        for (int j = 0; j < w; ++j) {
            ret[i][j] = matrix[j][h - i - 1];
        }
    }
    return ret;
}

此代码基于Nick Berardi的帖子。

下面是一个原地旋转的数组,而不是使用一个全新的数组来保存结果。我已经停止了数组的初始化和输出。这只适用于正方形数组,但它们可以是任何大小。内存开销等于数组中一个元素的大小,因此您可以对任意大的数组进行旋转。

int a[4][4];
int n = 4;
int tmp;
for (int i = 0; i < n / 2; i++)
{
    for (int j = i; j < n - i - 1; j++)
    {
        tmp             = a[i][j];
        a[i][j]         = a[j][n-i-1];
        a[j][n-i-1]     = a[n-i-1][n-j-1];
        a[n-i-1][n-j-1] = a[n-j-1][i];
        a[n-j-1][i]     = tmp;
    }
}

C代码的矩阵旋转90度顺时针在任何M*N矩阵的地方

void rotateInPlace(int * arr[size][size], int row, int column){
    int i, j;
    int temp = row>column?row:column;
    int flipTill = row < column ? row : column;
    for(i=0;i<flipTill;i++){
        for(j=0;j<i;j++){
            swapArrayElements(arr, i, j);
        }
    }

    temp = j+1;

    for(i = row>column?i:0; i<row; i++){
            for(j=row<column?temp:0; j<column; j++){
                swapArrayElements(arr, i, j);
            }
    }

    for(i=0;i<column;i++){
        for(j=0;j<row/2;j++){
            temp = arr[i][j];
            arr[i][j] = arr[i][row-j-1];
            arr[i][row-j-1] = temp;
        }
    }
}

在python中:

import numpy as np

a = np.array(
    [
        [1, 2, 3, 4],
        [5, 6, 7, 8],
        [9, 0, 1, 2],
        [3, 4, 5, 6]
    ]
)

print(a)
print(b[::-1, :].T)

我只用一个循环就能做到。时间复杂度看起来像O(K)其中K是数组中的所有元素。 下面是我用JavaScript做的:

首先,我们用一个数组来表示n^2矩阵。然后,像这样迭代它:

/**
 * Rotates matrix 90 degrees clockwise
 * @param arr: the source array
 * @param n: the array side (array is square n^2)
 */
function rotate (arr, n) {
  var rotated = [], indexes = []

  for (var i = 0; i < arr.length; i++) {
    if (i < n)
      indexes[i] = i * n + (n - 1)
    else
      indexes[i] = indexes[i - n] - 1

    rotated[indexes[i]] = arr[i]
  }
  return rotated
}

基本上,我们转换源数组下标:

[0,1,2,3,4,5,6,7,8] => [2,5,8,1,4,7,0,3 6]

然后,使用这个转换后的索引数组,我们将实际值放在最终旋转的数组中。

下面是一些测试用例:

//n=3
rotate([
  1, 2, 3,
  4, 5, 6,
  7, 8, 9], 3))

//result:
[7, 4, 1,
 8, 5, 2,
 9, 6, 3]


//n=4
rotate([
  1,  2,  3,  4,
  5,  6,  7,  8,
  9,  10, 11, 12,
  13, 14, 15, 16], 4))

//result:
[13,  9,  5,  1,
 14, 10,  6,  2,
 15, 11,  7,  3,
 16, 12,  8,  4]


//n=5
rotate([
  1,  2,  3,  4,  5,
  6,  7,  8,  9,  10,
  11, 12, 13, 14, 15,
  16, 17, 18, 19, 20,
  21, 22, 23, 24, 25], 5))

//result:
[21, 16, 11,  6,  1, 
 22, 17, 12,  7,  2, 
 23, 18, 13,  8,  3, 
 24, 19, 14,  9,  4, 
 25, 20, 15, 10,  5]