受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

我的c#示例代码的伟大算法发送@dimple:

/* Author: Dudi,
 * http://www.tutorialspoint.com/compile_csharp_online.php?PID=0Bw_CjBb95KQMYm5qU3VjVGNuZFU */

using System.IO;
using System;

class Program
{
    static void Main()
    {
        Console.WriteLine("Rotating this matrix by 90+ degree:");

        int[,] values=new int[3,3]{{1,2,3}, {4,5,6}, {7,8,9}};
        //int[,] values=new int[4,4]{{101,102,103, 104}, {105,106, 107,108}, {109, 110, 111, 112}, {113, 114, 115, 116}};

        print2dArray(ref values);
        transpose2dArray(ref values);
        //print2dArray(ref values);
        reverse2dArray(ref values);
        Console.WriteLine("Output:");
        print2dArray(ref values);
    }

    static void print2dArray(ref int[,] matrix){
        int  nLen = matrix.GetLength(0);
        int  mLen = matrix.GetLength(1);    
        for(int n=0; n<nLen; n++){
            for(int m=0; m<mLen; m++){
                Console.Write(matrix[n,m] +"\t");
            }
            Console.WriteLine();        
        }
        Console.WriteLine();
    }

    static void transpose2dArray(ref int[,] matrix){
        int  nLen = matrix.GetLength(0);
        int  mLen = matrix.GetLength(1);    
        for(int n=0; n<nLen; n++){
            for(int m=0; m<mLen; m++){
                if(n>m){
                    int tmp = matrix[n,m];
                    matrix[n,m] = matrix[m,n];
                    matrix[m,n] = tmp;
                }
            }
        }
    }

    static void reverse2dArray(ref int[,] matrix){
        int  nLen = matrix.GetLength(0);
        int  mLen = matrix.GetLength(1);
        for(int n=0; n<nLen; n++){
            for(int m=0; m<mLen/2; m++){                
                int tmp = matrix[n,m];
                matrix[n,m] = matrix[n, mLen-1-m];
                matrix[n,mLen-1-m] = tmp;
            }
        }
    }
}

/*
Rotating this matrix by 90+ degree:                                                                                                                                             
1       2       3                                                                                                                                                               
4       5       6                                                                                                                                                               
7       8       9                                                                                                                                                               

Output:                                                                                                                                                                         
7       4       1                                                                                                                                                               
8       5       2                                                                                                                                                               
9       6       3  
*/

其他回答

基于社区wiki算法和这个转置数组的SO答案,这里是一个Swift 4版本,可以逆时针旋转一些2D数组90度。这里假设matrix是一个2D数组:

func rotate(matrix: [[Int]]) -> [[Int]] {
    let transposedPoints = transpose(input: matrix)
    let rotatedPoints = transposedPoints.map{ Array($0.reversed()) }
    return rotatedPoints
}


fileprivate func transpose<T>(input: [[T]]) -> [[T]] {
    if input.isEmpty { return [[T]]() }
    let count = input[0].count
    var out = [[T]](repeating: [T](), count: count)
    for outer in input {
        for (index, inner) in outer.enumerated() {
            out[index].append(inner)
        }
    }

    return out
}

已经有很多答案了,我发现两个声称O(1)时间复杂度。真正的O(1)算法是保持数组存储不变,并改变索引其元素的方式。这里的目标是不消耗额外的内存,也不需要额外的时间来迭代数据。

旋转90度,-90度和180度是简单的转换,只要你知道你的2D数组中有多少行和列就可以执行;要将任何向量旋转90度,交换轴并与Y轴相反。对于-90度,交换轴和X轴。对于180度,两个坐标轴都是负的,不交换。

进一步的转换是可能的,例如通过独立地否定轴来水平和/或垂直地镜像。

这可以通过访问器方法来实现。下面的例子是JavaScript函数,但是这些概念同样适用于所有语言。

//按列/行顺序获取数组元素 var getArray2d =函数(a, x, y) { 返回一个[y] [x]; }; / /演示 Var arr = [ [5,4,6], [1,7,9], [- 2,11,0], [8,21, -3], [3, -1, 2] ]; Var newar = []; arr[0]. foreach (() => newarr。push(新数组(arr.length))); For (var I = 0;I < newar .length;我+ +){ For (var j = 0;J < newarr[0].length;j + +) { newarr[i][j] = getArray2d(arr, i, j); } } console.log (newarr);

// Get an array element rotated 90 degrees clockwise function getArray2dCW(a, x, y) { var t = x; x = y; y = a.length - t - 1; return a[y][x]; } //demo var arr = [ [5, 4, 6], [1, 7, 9], [-2, 11, 0], [8, 21, -3], [3, -1, 2] ]; var newarr = []; arr[0].forEach(() => newarr.push(new Array(arr.length))); for (var i = 0; i < newarr[0].length; i++) { for (var j = 0; j < newarr.length; j++) { newarr[j][i] = getArray2dCW(arr, i, j); } } console.log(newarr);

// Get an array element rotated 90 degrees counter-clockwise function getArray2dCCW(a, x, y) { var t = x; x = a[0].length - y - 1; y = t; return a[y][x]; } //demo var arr = [ [5, 4, 6], [1, 7, 9], [-2, 11, 0], [8, 21, -3], [3, -1, 2] ]; var newarr = []; arr[0].forEach(() => newarr.push(new Array(arr.length))); for (var i = 0; i < newarr[0].length; i++) { for (var j = 0; j < newarr.length; j++) { newarr[j][i] = getArray2dCCW(arr, i, j); } } console.log(newarr);

// Get an array element rotated 180 degrees function getArray2d180(a, x, y) { x = a[0].length - x - 1; y = a.length - y - 1; return a[y][x]; } //demo var arr = [ [5, 4, 6], [1, 7, 9], [-2, 11, 0], [8, 21, -3], [3, -1, 2] ]; var newarr = []; arr.forEach(() => newarr.push(new Array(arr[0].length))); for (var i = 0; i < newarr[0].length; i++) { for (var j = 0; j < newarr.length; j++) { newarr[j][i] = getArray2d180(arr, i, j); } } console.log(newarr);

这段代码假设有一个嵌套数组的数组,其中每个内部数组都是一行。

该方法允许您读取(或写入)元素(甚至是随机顺序),就像数组已经旋转或转换一样。现在只要选择正确的函数来调用,可能是通过引用,然后就可以了!

这个概念可以扩展为通过访问器方法附加地(非破坏性地)应用转换。包括任意角度旋转和缩放。

我的旋转版本:

void rotate_matrix(int *matrix, int size)
{

int result[size*size];

    for (int i = 0; i < size; ++i)
        for (int j = 0; j < size; ++j)
            result[(size - 1 - i) + j*size] = matrix[i*size+j];

    for (int i = 0; i < size*size; ++i)
        matrix[i] = result[i];
}

在其中,我们将最后一列改为第一行,以此类推。这可能不是最理想的,但对于理解来说是清楚的。

原地旋转不可能比O(n²)更快,原因是如果我们想旋转矩阵,我们必须至少一次触及所有n²元素,无论你实现什么算法。

O(n²)时间和O(1)空间算法(没有任何变通方法和恶作剧的东西!)

旋转+90:

转置 反转每行

旋转-90:

方法一:

转置 反转每一列

方法二:

反转每行 转置

旋转180度:

方法一:旋转+90两次

方法2:反转每行,然后反转每列(转置)

旋转-180度:

方法一:旋转-90度2次

方法二:先反转每一列,再反转每一行

方法三:旋转+180,因为它们是相同的