受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
下面是一个原地旋转的数组,而不是使用一个全新的数组来保存结果。我已经停止了数组的初始化和输出。这只适用于正方形数组,但它们可以是任何大小。内存开销等于数组中一个元素的大小,因此您可以对任意大的数组进行旋转。
int a[4][4];
int n = 4;
int tmp;
for (int i = 0; i < n / 2; i++)
{
for (int j = i; j < n - i - 1; j++)
{
tmp = a[i][j];
a[i][j] = a[j][n-i-1];
a[j][n-i-1] = a[n-i-1][n-j-1];
a[n-i-1][n-j-1] = a[n-j-1][i];
a[n-j-1][i] = tmp;
}
}
其他回答
下面是我的Ruby版本(注意,值显示的不一样,但它仍然按照描述旋转)。
def rotate(matrix)
result = []
4.times { |x|
result[x] = []
4.times { |y|
result[x][y] = matrix[y][3 - x]
}
}
result
end
matrix = []
matrix[0] = [1,2,3,4]
matrix[1] = [5,6,7,8]
matrix[2] = [9,0,1,2]
matrix[3] = [3,4,5,6]
def print_matrix(matrix)
4.times { |y|
4.times { |x|
print "#{matrix[x][y]} "
}
puts ""
}
end
print_matrix(matrix)
puts ""
print_matrix(rotate(matrix))
输出:
1 5 9 3
2 6 0 4
3 7 1 5
4 8 2 6
4 3 2 1
8 7 6 5
2 1 0 9
6 5 4 3
我的c#示例代码的伟大算法发送@dimple:
/* Author: Dudi,
* http://www.tutorialspoint.com/compile_csharp_online.php?PID=0Bw_CjBb95KQMYm5qU3VjVGNuZFU */
using System.IO;
using System;
class Program
{
static void Main()
{
Console.WriteLine("Rotating this matrix by 90+ degree:");
int[,] values=new int[3,3]{{1,2,3}, {4,5,6}, {7,8,9}};
//int[,] values=new int[4,4]{{101,102,103, 104}, {105,106, 107,108}, {109, 110, 111, 112}, {113, 114, 115, 116}};
print2dArray(ref values);
transpose2dArray(ref values);
//print2dArray(ref values);
reverse2dArray(ref values);
Console.WriteLine("Output:");
print2dArray(ref values);
}
static void print2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen; m++){
Console.Write(matrix[n,m] +"\t");
}
Console.WriteLine();
}
Console.WriteLine();
}
static void transpose2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen; m++){
if(n>m){
int tmp = matrix[n,m];
matrix[n,m] = matrix[m,n];
matrix[m,n] = tmp;
}
}
}
}
static void reverse2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen/2; m++){
int tmp = matrix[n,m];
matrix[n,m] = matrix[n, mLen-1-m];
matrix[n,mLen-1-m] = tmp;
}
}
}
}
/*
Rotating this matrix by 90+ degree:
1 2 3
4 5 6
7 8 9
Output:
7 4 1
8 5 2
9 6 3
*/
下面是Java语言:
public static void rotateInPlace(int[][] m) {
for(int layer = 0; layer < m.length/2; layer++){
int first = layer;
int last = m.length - 1 - first;
for(int i = first; i < last; i ++){
int offset = i - first;
int top = m[first][i];
m[first][i] = m[last - offset][first];
m[last - offset][first] = m[last][last - offset];
m[last][last - offset] = m[i][last];
m[i][last] = top;
}
}
}
虽然旋转数据可能是必要的(也许是为了更新物理存储的表示),但在数组访问上添加一层间接层(也许是一个接口)会变得更简单,可能更性能:
interface IReadableMatrix
{
int GetValue(int x, int y);
}
如果你的矩阵已经实现了这个接口,那么它可以通过这样一个装饰器类来旋转:
class RotatedMatrix : IReadableMatrix
{
private readonly IReadableMatrix _baseMatrix;
public RotatedMatrix(IReadableMatrix baseMatrix)
{
_baseMatrix = baseMatrix;
}
int GetValue(int x, int y)
{
// transpose x and y dimensions
return _baseMatrix(y, x);
}
}
旋转+90/-90/180度,水平/垂直翻转和缩放都可以以这种方式实现。
Performance would need to be measured in your specific scenario. However the O(n^2) operation has now been replaced with an O(1) call. It's a virtual method call which is slower than direct array access, so it depends upon how frequently the rotated array is used after rotation. If it's used once, then this approach would definitely win. If it's rotated then used in a long-running system for days, then in-place rotation might perform better. It also depends whether you can accept the up-front cost.
与所有性能问题一样,测量,测量,测量!
这是一个如今被高估的面试问题。
我的建议是:不要让面试官用他们关于解决这个问题的疯狂建议把你弄糊涂了。使用白板绘制输入数组的索引,然后绘制输出数组的索引。旋转前后的列分度示例如下:
30 --> 00
20 --> 01
10 --> 02
00 --> 03
31 --> 10
21 --> 11
11 --> 12
01 --> 13
注意旋转后的数字模式。
下面提供了一个简洁的Java解决方案。经过测试,它是有效的:
Input:
M A C P
B N L D
Y E T S
I W R Z
Output:
I Y B M
W E N A
R T L C
Z S D P
/**
* (c) @author "G A N MOHIM"
* Oct 3, 2015
* RotateArrayNintyDegree.java
*/
package rotatearray;
public class RotateArrayNintyDegree {
public char[][] rotateArrayNinetyDegree(char[][] input) {
int k; // k is used to generate index for output array
char[][] output = new char[input.length] [input[0].length];
for (int i = 0; i < input.length; i++) {
k = 0;
for (int j = input.length-1; j >= 0; j--) {
output[i][k] = input[j][i]; // note how i is used as column index, and j as row
k++;
}
}
return output;
}
public void printArray(char[][] charArray) {
for (int i = 0; i < charArray.length; i++) {
for (int j = 0; j < charArray[0].length; j++) {
System.out.print(charArray[i][j] + " ");
}
System.out.println();
}
}
public static void main(String[] args) {
char[][] input =
{ {'M', 'A', 'C', 'P'},
{'B', 'N', 'L', 'D'},
{'Y', 'E', 'T', 'S'},
{'I', 'W', 'R', 'Z'}
};
char[][] output = new char[input.length] [input[0].length];
RotateArrayNintyDegree rotationObj = new RotateArrayNintyDegree();
rotationObj.printArray(input);
System.out.println("\n");
output = rotationObj.rotateArrayNinetyDegree(input);
rotationObj.printArray(output);
}
}