受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

这里有大量的好代码,但我只是想以几何形式展示,这样你就能更好地理解代码逻辑。以下是我的处理方法。

首先,不要把这和换位相混淆,换位是很容易的。

基本的想法是把它当作层,我们一次旋转一个层。

假设我们有一辆4x4

1   2   3   4
5   6   7   8
9   10  11  12
13  14  15  16

当我们顺时针旋转90度,我们得到

13  9   5   1
14  10  6   2   
15  11  7   3
16  12  8   4

我们来分解它,首先旋转这四个角

1           4


13          16

然后我们旋转下面这个有点歪斜的菱形

    2
            8
9       
        15

然后是第二个斜菱形

        3
5           
            12
    14

这就搞定了外缘基本上我们一次做一个壳层直到

最后是中间的方块(如果是奇数则是最后一个不动的元素)

6   7
10  11

现在我们来算出每一层的指标,假设我们总是在最外层工作,我们正在做

[0,0] -> [0,n-1], [0,n-1] -> [n-1,n-1], [n-1,n-1] -> [n-1,0], and [n-1,0] -> [0,0]
[0,1] -> [1,n-1], [1,n-2] -> [n-1,n-2], [n-1,n-2] -> [n-2,0], and [n-2,0] -> [0,1]
[0,2] -> [2,n-2], [2,n-2] -> [n-1,n-3], [n-1,n-3] -> [n-3,0], and [n-3,0] -> [0,2]

等等等等 直到我们走到边缘的一半

所以总的来说模式是

[0,i] -> [i,n-i], [i,n-i] -> [n-1,n-(i+1)], [n-1,n-(i+1)] -> [n-(i+1),0], and [n-(i+1),0] to [0,i]

其他回答

为新手程序员,在纯c++。(宝蓝的东西)

#include<iostream.h>
#include<conio.h>

int main()
{
    clrscr();

    int arr[10][10];        // 2d array that holds input elements 
    int result[10][10];     //holds result

    int m,n;                //rows and columns of arr[][]
    int x,y;                //rows and columns of result[][]

    int i,j;                //loop variables
    int t;                  //temporary , holds data while conversion

    cout<<"Enter no. of rows and columns of array: ";
    cin>>m>>n;
    cout<<"\nEnter elements of array: \n\n";
    for(i = 0; i < m; i++)
    {
        for(j = 0; j<n ; j++)
        {
          cin>>arr[i][j];         // input array elements from user
        }
    }


   //rotating matrix by +90 degrees

    x = n ;                      //for non-square matrix
    y = m ;     

    for(i = 0; i < x; i++)
    {  t = m-1;                     // to create required array bounds
       for(j = 0; j < y; j++)
       {
          result[i][j] = arr[t][i];
          t--;
       }
   }

   //print result

   cout<<"\nRotated matrix is: \n\n";
   for(i = 0; i < x; i++)
   {
       for(j = 0; j < y; j++)
       {
             cout<<result[i][j]<<" ";
       }
       cout<<"\n";
   }

   getch();
   return 0;
}

Python:

rotated = list(zip(*original[::-1]))

和逆时针方向:

rotated_ccw = list(zip(*original))[::-1]

这是如何工作的:

Zip (*original)将通过将列表中的对应项堆叠到新的列表中来交换2d数组的轴。(*操作符告诉函数将包含的列表分布到参数中)

>>> list(zip(*[[1,2,3],[4,5,6],[7,8,9]]))
[[1,4,7],[2,5,8],[3,6,9]]

语句[::-1]反转数组元素(请参阅扩展切片或这个问题):

>>> [[1,2,3],[4,5,6],[7,8,9]][::-1]
[[7,8,9],[4,5,6],[1,2,3]]

最后,将两者结合就得到了旋转变换。

改变[::-1]的位置将使列表在矩阵的不同层次上颠倒。

当前所有的解决方案都有O(n^2)开销作为临时空间(这不包括那些肮脏的OOP骗子!)这里有一个内存占用为O(1)的解决方案,将矩阵原地右转90度。该死的延展性,这玩意儿跑得很快!

#include <algorithm>
#include <cstddef>

// Rotates an NxN matrix of type T 90 degrees to the right.
template <typename T, size_t N>
void rotate_matrix(T (&matrix)[N][N])
{
    for(size_t i = 0; i < N; ++i)
        for(size_t j = 0; j <= (N-i); ++j)
            std::swap(matrix[i][j], matrix[j][i]);
}

免责声明:我实际上并没有测试这个。让我们玩打虫游戏吧!

这是我对矩阵90度旋转的尝试,这是c中的2步解决方案,首先转置矩阵,然后交换cols。

#define ROWS        5
#define COLS        5

void print_matrix_b(int B[][COLS], int rows, int cols) 
{
    for (int i = 0; i <= rows; i++) {
        for (int j = 0; j <=cols; j++) {
            printf("%d ", B[i][j]);
        }
        printf("\n");
    }
}

void swap_columns(int B[][COLS], int l, int r, int rows)
{
    int tmp;
    for (int i = 0; i <= rows; i++) {
        tmp = B[i][l];
        B[i][l] = B[i][r];
        B[i][r] = tmp;
    }
}


void matrix_2d_rotation(int B[][COLS], int rows, int cols)
{
    int tmp;
    // Transpose the matrix first
    for (int i = 0; i <= rows; i++) {
        for (int j = i; j <=cols; j++) {
            tmp = B[i][j];
            B[i][j] = B[j][i];
            B[j][i] = tmp;
        }
    }
    // Swap the first and last col and continue until
    // the middle.
    for (int i = 0; i < (cols / 2); i++)
        swap_columns(B, i, cols - i, rows);
}



int _tmain(int argc, _TCHAR* argv[])
{
    int B[ROWS][COLS] = { 
                  {1, 2, 3, 4, 5}, 
                      {6, 7, 8, 9, 10},
                          {11, 12, 13, 14, 15},
                          {16, 17, 18, 19, 20},
                          {21, 22, 23, 24, 25}
                        };

    matrix_2d_rotation(B, ROWS - 1, COLS - 1);

    print_matrix_b(B, ROWS - 1, COLS -1);
    return 0;
}

这是c#的

int[,] array = new int[4,4] {
    { 1,2,3,4 },
    { 5,6,7,8 },
    { 9,0,1,2 },
    { 3,4,5,6 }
};

int[,] rotated = RotateMatrix(array, 4);

static int[,] RotateMatrix(int[,] matrix, int n) {
    int[,] ret = new int[n, n];

    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            ret[i, j] = matrix[n - j - 1, i];
        }
    }

    return ret;
}