受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
#!/usr/bin/env python
original = [ [1,2,3],
[4,5,6],
[7,8,9] ]
# Rotate matrix 90 degrees...
for i in map(None,*original[::-1]):
print str(i) + '\n'
这导致双方旋转90度(即。123(上面)现在是741(左边)。
这个Python解决方案是可行的,因为它使用了带负步的切片来反转行顺序(将7移到最上面)
original = [ [7,8,9],
[4,5,6],
[1,2,3] ]
然后,它使用map(以及隐含的标识函数,这是map以None作为第一个参数的结果)和*按顺序解包所有元素,重新组合列(即。第一个元素一起放在一个元组中,第二个元素一起放在一个元组中,以此类推)。你有效地得到得到返回如下重组:
original = [[7,8,9],
[4,5,6],
[1,2,3]]
其他回答
在原地顺时针90度旋转使用矢量矢量..
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
//Rotate a Matrix by 90 degrees
void rotateMatrix(vector<vector<int> > &matrix){
int n=matrix.size();
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
swap(matrix[i][j],matrix[j][i]);
}
}
for(int i=0;i<n;i++){
reverse(matrix[i].begin(),matrix[i].end());
}
}
int main(){
int n;
cout<<"enter the size of the matrix:"<<endl;
while (cin >> n) {
vector< vector<int> > m;
cout<<"enter the elements"<<endl;
for (int i = 0; i < n; i++) {
m.push_back(vector<int>(n));
for (int j = 0; j < n; j++)
scanf("%d", &m[i][j]);
}
cout<<"the rotated matrix is:"<<endl;
rotateMatrix(m);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
cout << m[i][j] << ' ';
cout << endl;
}
}
return 0;
}
c#代码将[n,m] 2D数组向右旋转90度
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace MatrixProject
{
// mattrix class
class Matrix{
private int rows;
private int cols;
private int[,] matrix;
public Matrix(int n){
this.rows = n;
this.cols = n;
this.matrix = new int[this.rows,this.cols];
}
public Matrix(int n,int m){
this.rows = n;
this.cols = m;
this.matrix = new int[this.rows,this.cols];
}
public void Show()
{
for (var i = 0; i < this.rows; i++)
{
for (var j = 0; j < this.cols; j++) {
Console.Write("{0,3}", this.matrix[i, j]);
}
Console.WriteLine();
}
}
public void ReadElements()
{
for (var i = 0; i < this.rows; i++)
for (var j = 0; j < this.cols; j++)
{
Console.Write("element[{0},{1}]=",i,j);
this.matrix[i, j] = Convert.ToInt32(Console.ReadLine());
}
}
// rotate [n,m] 2D array by 90 deg right
public void Rotate90DegRight()
{
// create a mirror of current matrix
int[,] mirror = this.matrix;
// create a new matrix
this.matrix = new int[this.cols, this.rows];
for (int i = 0; i < this.rows; i++)
{
for (int j = 0; j < this.cols; j++)
{
this.matrix[j, this.rows - i - 1] = mirror[i, j];
}
}
// replace cols count with rows count
int tmp = this.rows;
this.rows = this.cols;
this.cols = tmp;
}
}
class Program
{
static void Main(string[] args)
{
Matrix myMatrix = new Matrix(3,4);
Console.WriteLine("Enter matrix elements:");
myMatrix.ReadElements();
Console.WriteLine("Matrix elements are:");
myMatrix.Show();
myMatrix.Rotate90DegRight();
Console.WriteLine("Matrix rotated at 90 deg are:");
myMatrix.Show();
Console.ReadLine();
}
}
}
结果:
Enter matrix elements:
element[0,0]=1
element[0,1]=2
element[0,2]=3
element[0,3]=4
element[1,0]=5
element[1,1]=6
element[1,2]=7
element[1,3]=8
element[2,0]=9
element[2,1]=10
element[2,2]=11
element[2,3]=12
Matrix elements are:
1 2 3 4
5 6 7 8
9 10 11 12
Matrix rotated at 90 deg are:
9 5 1
10 6 2
11 7 3
12 8 4
Nick的答案也适用于NxM阵列,只需要做一点修改(与NxN相反)。
string[,] orig = new string[n, m];
string[,] rot = new string[m, n];
...
for ( int i=0; i < n; i++ )
for ( int j=0; j < m; j++ )
rot[j, n - i - 1] = orig[i, j];
考虑这个问题的一种方法是将轴(0,0)的中心从左上角移动到右上角。你只是简单地从一个转置到另一个。
O(n²)时间和O(1)空间算法(没有任何变通方法和恶作剧的东西!)
旋转+90:
转置 反转每行
旋转-90:
方法一:
转置 反转每一列
方法二:
反转每行 转置
旋转180度:
方法一:旋转+90两次
方法2:反转每行,然后反转每列(转置)
旋转-180度:
方法一:旋转-90度2次
方法二:先反转每一列,再反转每一行
方法三:旋转+180,因为它们是相同的
下面是我的Ruby版本(注意,值显示的不一样,但它仍然按照描述旋转)。
def rotate(matrix)
result = []
4.times { |x|
result[x] = []
4.times { |y|
result[x][y] = matrix[y][3 - x]
}
}
result
end
matrix = []
matrix[0] = [1,2,3,4]
matrix[1] = [5,6,7,8]
matrix[2] = [9,0,1,2]
matrix[3] = [3,4,5,6]
def print_matrix(matrix)
4.times { |y|
4.times { |x|
print "#{matrix[x][y]} "
}
puts ""
}
end
print_matrix(matrix)
puts ""
print_matrix(rotate(matrix))
输出:
1 5 9 3
2 6 0 4
3 7 1 5
4 8 2 6
4 3 2 1
8 7 6 5
2 1 0 9
6 5 4 3