受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

    public static void rotateMatrix(int[,] matrix)
    {
        //C#, to rotate an N*N matrix in place
        int n = matrix.GetLength(0);
        int layers =  n / 2;
        int temp, temp2;

        for (int i = 0; i < layers; i++) // for a 5 * 5 matrix, layers will be 2, since at layer three there would be only one element, (2,2), and we do not need to rotate it with itself 
        {
            int offset = 0;
            while (offset < n - 2 * i - 1)
            {
                // top right <- top left 
                temp = matrix[i + offset, n - i - 1]; //top right value when offset is zero
                matrix[i + offset, n - i - 1] = matrix[i, i + offset];   

                //bottom right <- top right 
                temp2 = matrix[n - i - 1, n - i - 1 - offset]; //bottom right value when offset is zero
                matrix[n - i - 1, n - i - 1 - offset] = temp;  

                //bottom left <- bottom right 
                temp = matrix[n - i - 1 - offset, i];
                matrix[n - i - 1 - offset, i] = temp2;  

                //top left <- bottom left 
                matrix[i, i + offset] = temp; 

                offset++;
            }
        }
    }

其他回答

矩阵转置和旋转(+/-90,+/-180)的C代码

支持方阵和非方阵,具有原位和复制功能 支持2D数组和带有逻辑行/cols的1D指针 单元测试;有关使用示例,请参阅测试 测试gcc -std=c90 -Wall -pedantic, MSVC17

`

#include <stdlib.h>
#include <memory.h>
#include <assert.h>

/* 
    Matrix transpose & rotate (+/-90, +/-180)
        Supports both 2D arrays and 1D pointers with logical rows/cols
        Supports square and non-square matrices, has in-place and copy features
        See tests for examples of usage
    tested gcc -std=c90 -Wall -pedantic, MSVC17
*/

typedef int matrix_data_t;  /* matrix data type */

void transpose(const matrix_data_t* src, matrix_data_t* dst, int rows, int cols);
void transpose_inplace(matrix_data_t* data, int n );
void rotate(int direction, const matrix_data_t* src, matrix_data_t* dst, int rows, int cols);
void rotate_inplace(int direction, matrix_data_t* data, int n);
void reverse_rows(matrix_data_t* data, int rows, int cols);
void reverse_cols(matrix_data_t* data, int rows, int cols);

/* test/compare fn */
int test_cmp(const matrix_data_t* lhs, const matrix_data_t* rhs, int rows, int cols );

/* TESTS/USAGE */
void transpose_test() {

    matrix_data_t sq3x3[9] = { 0,1,2,3,4,5,6,7,8 };/* 3x3 square, odd length side */
    matrix_data_t sq3x3_cpy[9];
    matrix_data_t sq3x3_2D[3][3] = { { 0,1,2 },{ 3,4,5 },{ 6,7,8 } };/* 2D 3x3 square */
    matrix_data_t sq3x3_2D_copy[3][3];

    /* expected test values */
    const matrix_data_t sq3x3_orig[9] = { 0,1,2,3,4,5,6,7,8 };
    const matrix_data_t sq3x3_transposed[9] = { 0,3,6,1,4,7,2,5,8};

    matrix_data_t sq4x4[16]= { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 };/* 4x4 square, even length*/
    const matrix_data_t sq4x4_orig[16] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 };
    const matrix_data_t sq4x4_transposed[16] = { 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15 };

    /* 2x3 rectangle */
    const matrix_data_t r2x3_orig[6] = { 0,1,2,3,4,5 };
    const matrix_data_t r2x3_transposed[6] = { 0,3,1,4,2,5 };
    matrix_data_t r2x3_copy[6];

    matrix_data_t r2x3_2D[2][3] = { {0,1,2},{3,4,5} };  /* 2x3 2D rectangle */
    matrix_data_t r2x3_2D_t[3][2];

    /* matrix_data_t r3x2[6] = { 0,1,2,3,4,5 }; */
    matrix_data_t r3x2_copy[6];
    /* 3x2 rectangle */
    const matrix_data_t r3x2_orig[6] = { 0,1,2,3,4,5 };
    const matrix_data_t r3x2_transposed[6] = { 0,2,4,1,3,5 };

    matrix_data_t r6x1[6] = { 0,1,2,3,4,5 };    /* 6x1 */
    matrix_data_t r6x1_copy[6];

    matrix_data_t r1x1[1] = { 0 };  /*1x1*/
    matrix_data_t r1x1_copy[1];

    /* 3x3 tests, 2D array tests */
    transpose_inplace(sq3x3, 3);    /* transpose in place */
    assert(!test_cmp(sq3x3, sq3x3_transposed, 3, 3));
    transpose_inplace(sq3x3, 3);    /* transpose again */
    assert(!test_cmp(sq3x3, sq3x3_orig, 3, 3));

    transpose(sq3x3, sq3x3_cpy, 3, 3);  /* transpose copy 3x3*/
    assert(!test_cmp(sq3x3_cpy, sq3x3_transposed, 3, 3));

    transpose((matrix_data_t*)sq3x3_2D, (matrix_data_t*)sq3x3_2D_copy, 3, 3);   /* 2D array transpose/copy */
    assert(!test_cmp((matrix_data_t*)sq3x3_2D_copy, sq3x3_transposed, 3, 3));
    transpose_inplace((matrix_data_t*)sq3x3_2D_copy, 3);    /* 2D array transpose in place */
    assert(!test_cmp((matrix_data_t*)sq3x3_2D_copy, sq3x3_orig, 3, 3));

    /* 4x4 tests */
    transpose_inplace(sq4x4, 4);    /* transpose in place */
    assert(!test_cmp(sq4x4, sq4x4_transposed, 4,4));
    transpose_inplace(sq4x4, 4);    /* transpose again */
    assert(!test_cmp(sq4x4, sq4x4_orig, 3, 3));

    /* 2x3,3x2 tests */
    transpose(r2x3_orig, r2x3_copy, 2, 3);
    assert(!test_cmp(r2x3_copy, r2x3_transposed, 3, 2));

    transpose(r3x2_orig, r3x2_copy, 3, 2);
    assert(!test_cmp(r3x2_copy, r3x2_transposed, 2,3));

    /* 2D array */
    transpose((matrix_data_t*)r2x3_2D, (matrix_data_t*)r2x3_2D_t, 2, 3);
    assert(!test_cmp((matrix_data_t*)r2x3_2D_t, r2x3_transposed, 3,2));

    /* Nx1 test, 1x1 test */
    transpose(r6x1, r6x1_copy, 6, 1);
    assert(!test_cmp(r6x1_copy, r6x1, 1, 6));

    transpose(r1x1, r1x1_copy, 1, 1);
    assert(!test_cmp(r1x1_copy, r1x1, 1, 1));

}

void rotate_test() {

    /* 3x3 square */
    const matrix_data_t sq3x3[9] = { 0,1,2,3,4,5,6,7,8 };
    const matrix_data_t sq3x3_r90[9] = { 6,3,0,7,4,1,8,5,2 };
    const matrix_data_t sq3x3_180[9] = { 8,7,6,5,4,3,2,1,0 };
    const matrix_data_t sq3x3_l90[9] = { 2,5,8,1,4,7,0,3,6 };
    matrix_data_t sq3x3_copy[9];

    /* 3x3 square, 2D */
    matrix_data_t sq3x3_2D[3][3] = { { 0,1,2 },{ 3,4,5 },{ 6,7,8 } };

    /* 4x4, 2D */
    matrix_data_t sq4x4[4][4] = { { 0,1,2,3 },{ 4,5,6,7 },{ 8,9,10,11 },{ 12,13,14,15 } };
    matrix_data_t sq4x4_copy[4][4];
    const matrix_data_t sq4x4_r90[16] = { 12,8,4,0,13,9,5,1,14,10,6,2,15,11,7,3 };
    const matrix_data_t sq4x4_l90[16] = { 3,7,11,15,2,6,10,14,1,5,9,13,0,4,8,12 };
    const matrix_data_t sq4x4_180[16] = { 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 };

    matrix_data_t r6[6] = { 0,1,2,3,4,5 };  /* rectangle with area of 6 (1x6,2x3,3x2, or 6x1) */
    matrix_data_t r6_copy[6];
    const matrix_data_t r1x6_r90[6] = { 0,1,2,3,4,5 };
    const matrix_data_t r1x6_l90[6] = { 5,4,3,2,1,0 };
    const matrix_data_t r1x6_180[6] = { 5,4,3,2,1,0 };

    const matrix_data_t r2x3_r90[6] = { 3,0,4,1,5,2 };
    const matrix_data_t r2x3_l90[6] = { 2,5,1,4,0,3 };
    const matrix_data_t r2x3_180[6] = { 5,4,3,2,1,0 };

    const matrix_data_t r3x2_r90[6] = { 4,2,0,5,3,1 };
    const matrix_data_t r3x2_l90[6] = { 1,3,5,0,2,4 };
    const matrix_data_t r3x2_180[6] = { 5,4,3,2,1,0 };

    const matrix_data_t r6x1_r90[6] = { 5,4,3,2,1,0 };
    const matrix_data_t r6x1_l90[6] = { 0,1,2,3,4,5 };
    const matrix_data_t r6x1_180[6] = { 5,4,3,2,1,0 };

    /* sq3x3 tests */
    rotate(90, sq3x3, sq3x3_copy, 3, 3);    /* +90 */
    assert(!test_cmp(sq3x3_copy, sq3x3_r90, 3, 3));
    rotate(-90, sq3x3, sq3x3_copy, 3, 3);   /* -90 */
    assert(!test_cmp(sq3x3_copy, sq3x3_l90, 3, 3));
    rotate(180, sq3x3, sq3x3_copy, 3, 3);   /* 180 */
    assert(!test_cmp(sq3x3_copy, sq3x3_180, 3, 3));
    /* sq3x3 in-place rotations */
    memcpy( sq3x3_copy, sq3x3, 3 * 3 * sizeof(matrix_data_t));
    rotate_inplace(90, sq3x3_copy, 3);
    assert(!test_cmp(sq3x3_copy, sq3x3_r90, 3, 3));
    rotate_inplace(-90, sq3x3_copy, 3);
    assert(!test_cmp(sq3x3_copy, sq3x3, 3, 3)); /* back to 0 orientation */
    rotate_inplace(180, sq3x3_copy, 3);
    assert(!test_cmp(sq3x3_copy, sq3x3_180, 3, 3));
    rotate_inplace(-180, sq3x3_copy, 3);
    assert(!test_cmp(sq3x3_copy, sq3x3, 3, 3));
    rotate_inplace(180, (matrix_data_t*)sq3x3_2D, 3);/* 2D test */
    assert(!test_cmp((matrix_data_t*)sq3x3_2D, sq3x3_180, 3, 3));

    /* sq4x4 */
    rotate(90, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
    assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_r90, 4, 4));
    rotate(-90, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
    assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_l90, 4, 4));
    rotate(180, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
    assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_180, 4, 4));

    /* r6 as 1x6 */
    rotate(90, r6, r6_copy, 1, 6);
    assert(!test_cmp(r6_copy, r1x6_r90, 1, 6));
    rotate(-90, r6, r6_copy, 1, 6);
    assert(!test_cmp(r6_copy, r1x6_l90, 1, 6));
    rotate(180, r6, r6_copy, 1, 6);
    assert(!test_cmp(r6_copy, r1x6_180, 1, 6));

    /* r6 as 2x3 */
    rotate(90, r6, r6_copy, 2, 3);
    assert(!test_cmp(r6_copy, r2x3_r90, 2, 3));
    rotate(-90, r6, r6_copy, 2, 3);
    assert(!test_cmp(r6_copy, r2x3_l90, 2, 3));
    rotate(180, r6, r6_copy, 2, 3);
    assert(!test_cmp(r6_copy, r2x3_180, 2, 3));

    /* r6 as 3x2 */
    rotate(90, r6, r6_copy, 3, 2);
    assert(!test_cmp(r6_copy, r3x2_r90, 3, 2));
    rotate(-90, r6, r6_copy, 3, 2);
    assert(!test_cmp(r6_copy, r3x2_l90, 3, 2));
    rotate(180, r6, r6_copy, 3, 2);
    assert(!test_cmp(r6_copy, r3x2_180, 3, 2));

    /* r6 as 6x1 */
    rotate(90, r6, r6_copy, 6, 1);
    assert(!test_cmp(r6_copy, r6x1_r90, 6, 1));
    rotate(-90, r6, r6_copy, 6, 1);
    assert(!test_cmp(r6_copy, r6x1_l90, 6, 1));
    rotate(180, r6, r6_copy, 6, 1);
    assert(!test_cmp(r6_copy, r6x1_180, 6, 1));
}

/* test comparison fn, return 0 on match else non zero */
int test_cmp(const matrix_data_t* lhs, const matrix_data_t* rhs, int rows, int cols) {

    int r, c;

    for (r = 0; r < rows; ++r) {
        for (c = 0; c < cols; ++c) {
            if ((lhs + r * cols)[c] != (rhs + r * cols)[c])
                return -1;
        }
    }
    return 0;
}

/*
Reverse values in place of each row in 2D matrix data[rows][cols] or in 1D pointer with logical rows/cols
[A B C] ->  [C B A]
[D E F]     [F E D]
*/
void reverse_rows(matrix_data_t* data, int rows, int cols) {

    int r, c;
    matrix_data_t temp;
    matrix_data_t* pRow = NULL;

    for (r = 0; r < rows; ++r) {
        pRow = (data + r * cols);
        for (c = 0; c < (int)(cols / 2); ++c) { /* explicit truncate */
            temp = pRow[c];
            pRow[c] = pRow[cols - 1 - c];
            pRow[cols - 1 - c] = temp;
        }
    }
}

/*
Reverse values in place of each column in 2D matrix data[rows][cols] or in 1D pointer with logical rows/cols
[A B C] ->  [D E F]
[D E F]     [A B C]
*/
void reverse_cols(matrix_data_t* data, int rows, int cols) {

    int r, c;
    matrix_data_t temp;
    matrix_data_t* pRowA = NULL;
    matrix_data_t* pRowB = NULL;

    for (c = 0; c < cols; ++c) {
        for (r = 0; r < (int)(rows / 2); ++r) { /* explicit truncate */
            pRowA = data + r * cols;
            pRowB = data + cols * (rows - 1 - r);
            temp = pRowA[c];
            pRowA[c] = pRowB[c];
            pRowB[c] = temp;
        }
    }
}

/* Transpose NxM matrix to MxN matrix in O(n) time */
void transpose(const matrix_data_t* src, matrix_data_t* dst, int N, int M) {

    int i;
    for (i = 0; i<N*M; ++i) dst[(i%M)*N + (i / M)] = src[i];    /* one-liner version */

    /*
    expanded version of one-liner:  calculate XY based on array index, then convert that to YX array index
    int i,j,x,y;
    for (i = 0; i < N*M; ++i) {
    x = i % M;
    y = (int)(i / M);
    j = x * N + y;
    dst[j] = src[i];
    }
    */

    /*
    nested for loop version
    using ptr arithmetic to get proper row/column
    this is really just dst[col][row]=src[row][col]

    int r, c;

    for (r = 0; r < rows; ++r) {
        for (c = 0; c < cols; ++c) {
            (dst + c * rows)[r] = (src + r * cols)[c];
        }
    }
    */
}

/*
Transpose NxN matrix in place
*/
void transpose_inplace(matrix_data_t* data, int N ) {

    int r, c;
    matrix_data_t temp;

    for (r = 0; r < N; ++r) {
        for (c = r; c < N; ++c) { /*start at column=row*/
                                    /* using ptr arithmetic to get proper row/column */
                                    /* this is really just
                                    temp=dst[col][row];
                                    dst[col][row]=src[row][col];
                                    src[row][col]=temp;
                                    */
            temp = (data + c * N)[r];
            (data + c * N)[r] = (data + r * N)[c];
            (data + r * N)[c] = temp;
        }
    }
}

/*
Rotate 1D or 2D src matrix to dst matrix in a direction (90,180,-90)
Precondition:  src and dst are 2d matrices with dimensions src[rows][cols] and dst[cols][rows] or 1D pointers with logical rows/cols
*/
void rotate(int direction, const matrix_data_t* src, matrix_data_t* dst, int rows, int cols) {

    switch (direction) {
    case -90:
        transpose(src, dst, rows, cols);
        reverse_cols(dst, cols, rows);
        break;
    case 90:
        transpose(src, dst, rows, cols);
        reverse_rows(dst, cols, rows);
        break;
    case 180:
    case -180:
        /* bit copy to dst, use in-place reversals */
        memcpy(dst, src, rows*cols*sizeof(matrix_data_t));
        reverse_cols(dst, cols, rows);
        reverse_rows(dst, cols, rows);
        break;
    }
}

/*
Rotate array in a direction.
Array must be NxN 2D or 1D array with logical rows/cols
Direction can be (90,180,-90,-180)
*/
void rotate_inplace( int direction, matrix_data_t* data, int n) {

    switch (direction) {
    case -90:
        transpose_inplace(data, n);
        reverse_cols(data, n, n);
        break;
    case 90:
        transpose_inplace(data, n);
        reverse_rows(data, n, n);
        break;
    case 180:
    case -180:
        reverse_cols(data, n, n);
        reverse_rows(data, n, n);
        break;
    }
}

`

这是c#的

int[,] array = new int[4,4] {
    { 1,2,3,4 },
    { 5,6,7,8 },
    { 9,0,1,2 },
    { 3,4,5,6 }
};

int[,] rotated = RotateMatrix(array, 4);

static int[,] RotateMatrix(int[,] matrix, int n) {
    int[,] ret = new int[n, n];

    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            ret[i, j] = matrix[n - j - 1, i];
        }
    }

    return ret;
}

这是我的实现,在C, O(1)内存复杂度,原地旋转,顺时针90度:

#include <stdio.h>

#define M_SIZE 5

static void initMatrix();
static void printMatrix();
static void rotateMatrix();

static int m[M_SIZE][M_SIZE];

int main(void){
    initMatrix();
    printMatrix();
    rotateMatrix();
    printMatrix();

    return 0;
}

static void initMatrix(){
    int i, j;

    for(i = 0; i < M_SIZE; i++){
        for(j = 0; j < M_SIZE; j++){
            m[i][j] = M_SIZE*i + j + 1;
        }
    }
}

static void printMatrix(){
    int i, j;

    printf("Matrix\n");
    for(i = 0; i < M_SIZE; i++){
        for(j = 0; j < M_SIZE; j++){
            printf("%02d ", m[i][j]);
        }
        printf("\n");
    }
    printf("\n");
}

static void rotateMatrix(){
    int r, c;

    for(r = 0; r < M_SIZE/2; r++){
        for(c = r; c < M_SIZE - r - 1; c++){
            int tmp = m[r][c];

            m[r][c] = m[M_SIZE - c - 1][r];
            m[M_SIZE - c - 1][r] = m[M_SIZE - r - 1][M_SIZE - c - 1];
            m[M_SIZE - r - 1][M_SIZE - c - 1] = m[c][M_SIZE - r - 1];
            m[c][M_SIZE - r - 1] = tmp;
        }
    }
}

这是一个Javascript解决方案:

const transpose = m => m[0].map((x,i) => m.map(x => x[i]));

a: // original matrix
123
456
789

transpose(a).reverse(); // rotate 90 degrees counter clockwise 
369
258
147

transpose(a.slice().reverse()); // rotate 90 degrees clockwise 
741
852
963

transpose(transpose(a.slice().reverse()).slice().reverse())
// rotate 180 degrees 
987
654
321

很好的答案,但对于那些正在寻找DRY JavaScript代码的人- +90度和-90度:

// Input: 1 2 3 // 4 5 6 // 7 8 9 // Transpose: // 1 4 7 // 2 5 8 // 3 6 9 // Output: // +90 Degree: // 7 4 1 // 8 5 2 // 9 6 3 // -90 Degree: // 3 6 9 // 2 5 8 // 1 4 7 // Rotate +90 function rotate90(matrix) { matrix = transpose(matrix); matrix.map(function(array) { array.reverse(); }); return matrix; } // Rotate -90 function counterRotate90(matrix) { var result = createEmptyMatrix(matrix.length); matrix = transpose(matrix); var counter = 0; for (var i = matrix.length - 1; i >= 0; i--) { result[counter] = matrix[i]; counter++; } return result; } // Create empty matrix function createEmptyMatrix(len) { var result = new Array(); for (var i = 0; i < len; i++) { result.push([]); } return result; } // Transpose the matrix function transpose(matrix) { // make empty array var len = matrix.length; var result = createEmptyMatrix(len); for (var i = 0; i < matrix.length; i++) { for (var j = 0; j < matrix[i].length; j++) { var temp = matrix[i][j]; result[j][i] = temp; } } return result; } // Test Cases var array1 = [ [1, 2], [3, 4] ]; var array2 = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]; var array3 = [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16] ]; // +90 degress Rotation Tests var test1 = rotate90(array1); var test2 = rotate90(array2); var test3 = rotate90(array3); console.log(test1); console.log(test2); console.log(test3); // -90 degress Rotation Tests var test1 = counterRotate90(array1); var test2 = counterRotate90(array2); var test3 = counterRotate90(array3); console.log(test1); console.log(test2); console.log(test3);