受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

    public static void rotateMatrix(int[,] matrix)
    {
        //C#, to rotate an N*N matrix in place
        int n = matrix.GetLength(0);
        int layers =  n / 2;
        int temp, temp2;

        for (int i = 0; i < layers; i++) // for a 5 * 5 matrix, layers will be 2, since at layer three there would be only one element, (2,2), and we do not need to rotate it with itself 
        {
            int offset = 0;
            while (offset < n - 2 * i - 1)
            {
                // top right <- top left 
                temp = matrix[i + offset, n - i - 1]; //top right value when offset is zero
                matrix[i + offset, n - i - 1] = matrix[i, i + offset];   

                //bottom right <- top right 
                temp2 = matrix[n - i - 1, n - i - 1 - offset]; //bottom right value when offset is zero
                matrix[n - i - 1, n - i - 1 - offset] = temp;  

                //bottom left <- bottom right 
                temp = matrix[n - i - 1 - offset, i];
                matrix[n - i - 1 - offset, i] = temp2;  

                //top left <- bottom left 
                matrix[i, i + offset] = temp; 

                offset++;
            }
        }
    }

其他回答

下面是我的Ruby版本(注意,值显示的不一样,但它仍然按照描述旋转)。

def rotate(matrix)
  result = []
  4.times { |x|
    result[x] = []
    4.times { |y|
      result[x][y] = matrix[y][3 - x]
    }
  }

  result
end

matrix = []
matrix[0] = [1,2,3,4]
matrix[1] = [5,6,7,8]
matrix[2] = [9,0,1,2]
matrix[3] = [3,4,5,6]

def print_matrix(matrix)
  4.times { |y|
    4.times { |x|
      print "#{matrix[x][y]} "
    }
    puts ""
  }
end

print_matrix(matrix)
puts ""
print_matrix(rotate(matrix))

输出:

1 5 9 3 
2 6 0 4 
3 7 1 5 
4 8 2 6 

4 3 2 1 
8 7 6 5 
2 1 0 9 
6 5 4 3

PHP解决方案为顺时针和逆时针

$aMatrix = array(
    array( 1, 2, 3 ),
    array( 4, 5, 6 ),
    array( 7, 8, 9 )
    );

function CounterClockwise( $aMatrix )
{
    $iCount  = count( $aMatrix );
    $aReturn = array();
    for( $y = 0; $y < $iCount; ++$y )
    {
        for( $x = 0; $x < $iCount; ++$x )
        {
            $aReturn[ $iCount - $x - 1 ][ $y ] = $aMatrix[ $y ][ $x ];
        }
    }
    return $aReturn;
}

function Clockwise( $aMatrix )
{
    $iCount  = count( $aMatrix );
    $aReturn = array();
    for( $y = 0; $y < $iCount; ++$y )
    {
        for( $x = 0; $x < $iCount; ++$x )
        {
            $aReturn[ $x ][ $iCount - $y - 1 ] = $aMatrix[ $y ][ $x ];
        }
    }
    return $aReturn;
}

function printMatrix( $aMatrix )
{
    $iCount = count( $aMatrix );
    for( $x = 0; $x < $iCount; ++$x )
    {
        for( $y = 0; $y < $iCount; ++$y )
        {
            echo $aMatrix[ $x ][ $y ];
            echo " ";
        }
        echo "\n";
    }
}
printMatrix( $aMatrix );
echo "\n";
$aNewMatrix = CounterClockwise( $aMatrix );
printMatrix( $aNewMatrix );
echo "\n";
$aNewMatrix = Clockwise( $aMatrix );
printMatrix( $aNewMatrix );

一些人已经举了一些例子,其中涉及到创建一个新数组。

还有一些需要考虑的事情:

(a)不实际移动数据,只需以不同的方式遍历“旋转”的数组。

(b)就地轮换可能有点棘手。您需要一点空白的地方(大概相当于一行或一列的大小)。有一篇古老的ACM论文是关于进行原地转置的(http://doi.acm.org/10.1145/355719.355729),但是他们的示例代码是令人讨厌的充满goto的FORTRAN。

附录:

http://doi.acm.org/10.1145/355611.355612是另一种更优越的就地转置算法。

O(n²)时间和O(1)空间算法(没有任何变通方法和恶作剧的东西!)

旋转+90:

转置 反转每行

旋转-90:

方法一:

转置 反转每一列

方法二:

反转每行 转置

旋转180度:

方法一:旋转+90两次

方法2:反转每行,然后反转每列(转置)

旋转-180度:

方法一:旋转-90度2次

方法二:先反转每一列,再反转每一行

方法三:旋转+180,因为它们是相同的

这是我的实现,在C, O(1)内存复杂度,原地旋转,顺时针90度:

#include <stdio.h>

#define M_SIZE 5

static void initMatrix();
static void printMatrix();
static void rotateMatrix();

static int m[M_SIZE][M_SIZE];

int main(void){
    initMatrix();
    printMatrix();
    rotateMatrix();
    printMatrix();

    return 0;
}

static void initMatrix(){
    int i, j;

    for(i = 0; i < M_SIZE; i++){
        for(j = 0; j < M_SIZE; j++){
            m[i][j] = M_SIZE*i + j + 1;
        }
    }
}

static void printMatrix(){
    int i, j;

    printf("Matrix\n");
    for(i = 0; i < M_SIZE; i++){
        for(j = 0; j < M_SIZE; j++){
            printf("%02d ", m[i][j]);
        }
        printf("\n");
    }
    printf("\n");
}

static void rotateMatrix(){
    int r, c;

    for(r = 0; r < M_SIZE/2; r++){
        for(c = r; c < M_SIZE - r - 1; c++){
            int tmp = m[r][c];

            m[r][c] = m[M_SIZE - c - 1][r];
            m[M_SIZE - c - 1][r] = m[M_SIZE - r - 1][M_SIZE - c - 1];
            m[M_SIZE - r - 1][M_SIZE - c - 1] = m[c][M_SIZE - r - 1];
            m[c][M_SIZE - r - 1] = tmp;
        }
    }
}