受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
public static void rotateMatrix(int[,] matrix)
{
//C#, to rotate an N*N matrix in place
int n = matrix.GetLength(0);
int layers = n / 2;
int temp, temp2;
for (int i = 0; i < layers; i++) // for a 5 * 5 matrix, layers will be 2, since at layer three there would be only one element, (2,2), and we do not need to rotate it with itself
{
int offset = 0;
while (offset < n - 2 * i - 1)
{
// top right <- top left
temp = matrix[i + offset, n - i - 1]; //top right value when offset is zero
matrix[i + offset, n - i - 1] = matrix[i, i + offset];
//bottom right <- top right
temp2 = matrix[n - i - 1, n - i - 1 - offset]; //bottom right value when offset is zero
matrix[n - i - 1, n - i - 1 - offset] = temp;
//bottom left <- bottom right
temp = matrix[n - i - 1 - offset, i];
matrix[n - i - 1 - offset, i] = temp2;
//top left <- bottom left
matrix[i, i + offset] = temp;
offset++;
}
}
}
其他回答
这个解决方案不关心正方形或矩形的尺寸,你可以旋转4x5或5x4甚至4x4,它也不关心大小。 注意,这种实现在每次调用rotate90方法时都会创建一个新数组,它根本不会改变原始数组。
public static void main(String[] args) {
int[][] a = new int[][] {
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 0, 1, 2 },
{ 3, 4, 5, 6 },
{ 7, 8, 9, 0 }
};
int[][] rotate180 = rotate90(rotate90(a));
print(rotate180);
}
static int[][] rotate90(int[][] a) {
int[][] ret = new int[a[0].length][a.length];
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a[i].length; j++) {
ret[j][a.length - i - 1] = a[i][j];
}
}
return ret;
}
static void print(int[][] array) {
for (int i = 0; i < array.length; i++) {
System.out.print("[");
for (int j = 0; j < array[i].length; j++) {
System.out.print(array[i][j]);
System.out.print(" ");
}
System.out.println("]");
}
}
c#代码将[n,m] 2D数组向右旋转90度
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace MatrixProject
{
// mattrix class
class Matrix{
private int rows;
private int cols;
private int[,] matrix;
public Matrix(int n){
this.rows = n;
this.cols = n;
this.matrix = new int[this.rows,this.cols];
}
public Matrix(int n,int m){
this.rows = n;
this.cols = m;
this.matrix = new int[this.rows,this.cols];
}
public void Show()
{
for (var i = 0; i < this.rows; i++)
{
for (var j = 0; j < this.cols; j++) {
Console.Write("{0,3}", this.matrix[i, j]);
}
Console.WriteLine();
}
}
public void ReadElements()
{
for (var i = 0; i < this.rows; i++)
for (var j = 0; j < this.cols; j++)
{
Console.Write("element[{0},{1}]=",i,j);
this.matrix[i, j] = Convert.ToInt32(Console.ReadLine());
}
}
// rotate [n,m] 2D array by 90 deg right
public void Rotate90DegRight()
{
// create a mirror of current matrix
int[,] mirror = this.matrix;
// create a new matrix
this.matrix = new int[this.cols, this.rows];
for (int i = 0; i < this.rows; i++)
{
for (int j = 0; j < this.cols; j++)
{
this.matrix[j, this.rows - i - 1] = mirror[i, j];
}
}
// replace cols count with rows count
int tmp = this.rows;
this.rows = this.cols;
this.cols = tmp;
}
}
class Program
{
static void Main(string[] args)
{
Matrix myMatrix = new Matrix(3,4);
Console.WriteLine("Enter matrix elements:");
myMatrix.ReadElements();
Console.WriteLine("Matrix elements are:");
myMatrix.Show();
myMatrix.Rotate90DegRight();
Console.WriteLine("Matrix rotated at 90 deg are:");
myMatrix.Show();
Console.ReadLine();
}
}
}
结果:
Enter matrix elements:
element[0,0]=1
element[0,1]=2
element[0,2]=3
element[0,3]=4
element[1,0]=5
element[1,1]=6
element[1,2]=7
element[1,3]=8
element[2,0]=9
element[2,1]=10
element[2,2]=11
element[2,3]=12
Matrix elements are:
1 2 3 4
5 6 7 8
9 10 11 12
Matrix rotated at 90 deg are:
9 5 1
10 6 2
11 7 3
12 8 4
在Eigen (c++)中:
Eigen::Matrix2d mat;
mat << 1, 2,
3, 4;
std::cout << mat << "\n\n";
Eigen::Matrix2d r_plus_90 = mat.transpose().rowwise().reverse();
std::cout << r_plus_90 << "\n\n";
Eigen::Matrix2d r_minus_90 = mat.transpose().colwise().reverse();
std::cout << r_minus_90 << "\n\n";
Eigen::Matrix2d r_180 = mat.colwise().reverse().rowwise().reverse(); // +180 same as -180
std::cout << r_180 << "\n\n";
输出:
1 2
3 4
3 1
4 2
2 4
1 3
4 3
2 1
这是一个Javascript解决方案:
const transpose = m => m[0].map((x,i) => m.map(x => x[i]));
a: // original matrix
123
456
789
transpose(a).reverse(); // rotate 90 degrees counter clockwise
369
258
147
transpose(a.slice().reverse()); // rotate 90 degrees clockwise
741
852
963
transpose(transpose(a.slice().reverse()).slice().reverse())
// rotate 180 degrees
987
654
321
Javascript解决NxN矩阵与运行时O(N^2)和内存O(1)
function rotate90(matrix){
var length = matrix.length
for(var row = 0; row < (length / 2); row++){
for(var col = row; col < ( length - 1 - row); col++){
var tmpVal = matrix[row][col];
for(var i = 0; i < 4; i++){
var rowSwap = col;
var colSwap = (length - 1) - row;
var poppedVal = matrix[rowSwap][colSwap];
matrix[rowSwap][colSwap] = tmpVal;
tmpVal = poppedVal;
col = colSwap;
row = rowSwap;
}
}
}
}