受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
下面是Java版本:
public static void rightRotate(int[][] matrix, int n) {
for (int layer = 0; layer < n / 2; layer++) {
int first = layer;
int last = n - 1 - first;
for (int i = first; i < last; i++) {
int offset = i - first;
int temp = matrix[first][i];
matrix[first][i] = matrix[last-offset][first];
matrix[last-offset][first] = matrix[last][last-offset];
matrix[last][last-offset] = matrix[i][last];
matrix[i][last] = temp;
}
}
}
该方法首先旋转最外层,然后按顺序移动到内层。
其他回答
Nick的答案也适用于NxM阵列,只需要做一点修改(与NxN相反)。
string[,] orig = new string[n, m];
string[,] rot = new string[m, n];
...
for ( int i=0; i < n; i++ )
for ( int j=0; j < m; j++ )
rot[j, n - i - 1] = orig[i, j];
考虑这个问题的一种方法是将轴(0,0)的中心从左上角移动到右上角。你只是简单地从一个转置到另一个。
已经有很多答案了,我发现两个声称O(1)时间复杂度。真正的O(1)算法是保持数组存储不变,并改变索引其元素的方式。这里的目标是不消耗额外的内存,也不需要额外的时间来迭代数据。
旋转90度,-90度和180度是简单的转换,只要你知道你的2D数组中有多少行和列就可以执行;要将任何向量旋转90度,交换轴并与Y轴相反。对于-90度,交换轴和X轴。对于180度,两个坐标轴都是负的,不交换。
进一步的转换是可能的,例如通过独立地否定轴来水平和/或垂直地镜像。
这可以通过访问器方法来实现。下面的例子是JavaScript函数,但是这些概念同样适用于所有语言。
//按列/行顺序获取数组元素 var getArray2d =函数(a, x, y) { 返回一个[y] [x]; }; / /演示 Var arr = [ [5,4,6], [1,7,9], [- 2,11,0], [8,21, -3], [3, -1, 2] ]; Var newar = []; arr[0]. foreach (() => newarr。push(新数组(arr.length))); For (var I = 0;I < newar .length;我+ +){ For (var j = 0;J < newarr[0].length;j + +) { newarr[i][j] = getArray2d(arr, i, j); } } console.log (newarr);
// Get an array element rotated 90 degrees clockwise function getArray2dCW(a, x, y) { var t = x; x = y; y = a.length - t - 1; return a[y][x]; } //demo var arr = [ [5, 4, 6], [1, 7, 9], [-2, 11, 0], [8, 21, -3], [3, -1, 2] ]; var newarr = []; arr[0].forEach(() => newarr.push(new Array(arr.length))); for (var i = 0; i < newarr[0].length; i++) { for (var j = 0; j < newarr.length; j++) { newarr[j][i] = getArray2dCW(arr, i, j); } } console.log(newarr);
// Get an array element rotated 90 degrees counter-clockwise function getArray2dCCW(a, x, y) { var t = x; x = a[0].length - y - 1; y = t; return a[y][x]; } //demo var arr = [ [5, 4, 6], [1, 7, 9], [-2, 11, 0], [8, 21, -3], [3, -1, 2] ]; var newarr = []; arr[0].forEach(() => newarr.push(new Array(arr.length))); for (var i = 0; i < newarr[0].length; i++) { for (var j = 0; j < newarr.length; j++) { newarr[j][i] = getArray2dCCW(arr, i, j); } } console.log(newarr);
// Get an array element rotated 180 degrees function getArray2d180(a, x, y) { x = a[0].length - x - 1; y = a.length - y - 1; return a[y][x]; } //demo var arr = [ [5, 4, 6], [1, 7, 9], [-2, 11, 0], [8, 21, -3], [3, -1, 2] ]; var newarr = []; arr.forEach(() => newarr.push(new Array(arr[0].length))); for (var i = 0; i < newarr[0].length; i++) { for (var j = 0; j < newarr.length; j++) { newarr[j][i] = getArray2d180(arr, i, j); } } console.log(newarr);
这段代码假设有一个嵌套数组的数组,其中每个内部数组都是一行。
该方法允许您读取(或写入)元素(甚至是随机顺序),就像数组已经旋转或转换一样。现在只要选择正确的函数来调用,可能是通过引用,然后就可以了!
这个概念可以扩展为通过访问器方法附加地(非破坏性地)应用转换。包括任意角度旋转和缩放。
这是我对矩阵90度旋转的尝试,这是c中的2步解决方案,首先转置矩阵,然后交换cols。
#define ROWS 5
#define COLS 5
void print_matrix_b(int B[][COLS], int rows, int cols)
{
for (int i = 0; i <= rows; i++) {
for (int j = 0; j <=cols; j++) {
printf("%d ", B[i][j]);
}
printf("\n");
}
}
void swap_columns(int B[][COLS], int l, int r, int rows)
{
int tmp;
for (int i = 0; i <= rows; i++) {
tmp = B[i][l];
B[i][l] = B[i][r];
B[i][r] = tmp;
}
}
void matrix_2d_rotation(int B[][COLS], int rows, int cols)
{
int tmp;
// Transpose the matrix first
for (int i = 0; i <= rows; i++) {
for (int j = i; j <=cols; j++) {
tmp = B[i][j];
B[i][j] = B[j][i];
B[j][i] = tmp;
}
}
// Swap the first and last col and continue until
// the middle.
for (int i = 0; i < (cols / 2); i++)
swap_columns(B, i, cols - i, rows);
}
int _tmain(int argc, _TCHAR* argv[])
{
int B[ROWS][COLS] = {
{1, 2, 3, 4, 5},
{6, 7, 8, 9, 10},
{11, 12, 13, 14, 15},
{16, 17, 18, 19, 20},
{21, 22, 23, 24, 25}
};
matrix_2d_rotation(B, ROWS - 1, COLS - 1);
print_matrix_b(B, ROWS - 1, COLS -1);
return 0;
}
下面是我的Ruby版本(注意,值显示的不一样,但它仍然按照描述旋转)。
def rotate(matrix)
result = []
4.times { |x|
result[x] = []
4.times { |y|
result[x][y] = matrix[y][3 - x]
}
}
result
end
matrix = []
matrix[0] = [1,2,3,4]
matrix[1] = [5,6,7,8]
matrix[2] = [9,0,1,2]
matrix[3] = [3,4,5,6]
def print_matrix(matrix)
4.times { |y|
4.times { |x|
print "#{matrix[x][y]} "
}
puts ""
}
end
print_matrix(matrix)
puts ""
print_matrix(rotate(matrix))
输出:
1 5 9 3
2 6 0 4
3 7 1 5
4 8 2 6
4 3 2 1
8 7 6 5
2 1 0 9
6 5 4 3
我的c#示例代码的伟大算法发送@dimple:
/* Author: Dudi,
* http://www.tutorialspoint.com/compile_csharp_online.php?PID=0Bw_CjBb95KQMYm5qU3VjVGNuZFU */
using System.IO;
using System;
class Program
{
static void Main()
{
Console.WriteLine("Rotating this matrix by 90+ degree:");
int[,] values=new int[3,3]{{1,2,3}, {4,5,6}, {7,8,9}};
//int[,] values=new int[4,4]{{101,102,103, 104}, {105,106, 107,108}, {109, 110, 111, 112}, {113, 114, 115, 116}};
print2dArray(ref values);
transpose2dArray(ref values);
//print2dArray(ref values);
reverse2dArray(ref values);
Console.WriteLine("Output:");
print2dArray(ref values);
}
static void print2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen; m++){
Console.Write(matrix[n,m] +"\t");
}
Console.WriteLine();
}
Console.WriteLine();
}
static void transpose2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen; m++){
if(n>m){
int tmp = matrix[n,m];
matrix[n,m] = matrix[m,n];
matrix[m,n] = tmp;
}
}
}
}
static void reverse2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen/2; m++){
int tmp = matrix[n,m];
matrix[n,m] = matrix[n, mLen-1-m];
matrix[n,mLen-1-m] = tmp;
}
}
}
}
/*
Rotating this matrix by 90+ degree:
1 2 3
4 5 6
7 8 9
Output:
7 4 1
8 5 2
9 6 3
*/