受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
这是Java中的一个更好的版本:我已经为一个具有不同宽度和高度的矩阵制作了它
H是旋转后矩阵的高度 W是旋转后矩阵的宽度
public int[][] rotateMatrixRight(int[][] matrix)
{
/* W and H are already swapped */
int w = matrix.length;
int h = matrix[0].length;
int[][] ret = new int[h][w];
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
ret[i][j] = matrix[w - j - 1][i];
}
}
return ret;
}
public int[][] rotateMatrixLeft(int[][] matrix)
{
/* W and H are already swapped */
int w = matrix.length;
int h = matrix[0].length;
int[][] ret = new int[h][w];
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
ret[i][j] = matrix[j][h - i - 1];
}
}
return ret;
}
此代码基于Nick Berardi的帖子。
其他回答
时间- O(N),空间- O(1)
public void rotate(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < n / 2; i++) {
int last = n - 1 - i;
for (int j = i; j < last; j++) {
int top = matrix[i][j];
matrix[i][j] = matrix[last - j][i];
matrix[last - j][i] = matrix[last][last - j];
matrix[last][last - j] = matrix[j][last];
matrix[j][last] = top;
}
}
}
顺时针或逆时针旋转2D数组的常用方法。
顺时针旋转 首先颠倒上下,然后交换对称 1 2 3 7 8 9 7 4 4 5 6 => 4 5 6 => 8 5 7 8 9 1 2 3 9 6 3
void rotate(vector<vector<int> > &matrix) {
reverse(matrix.begin(), matrix.end());
for (int i = 0; i < matrix.size(); ++i) {
for (int j = i + 1; j < matrix[i].size(); ++j)
swap(matrix[i][j], matrix[j][i]);
}
}
逆时针方向旋转 首先从左到右反向,然后交换对称 1 2 3 3 2 1 3 6 9 4 5 6 => 6 5 4 => 2 5 7 8 9 9 8 7 1 4 7
void anti_rotate(vector<vector<int> > &matrix) {
for (auto vi : matrix) reverse(vi.begin(), vi.end());
for (int i = 0; i < matrix.size(); ++i) {
for (int j = i + 1; j < matrix[i].size(); ++j)
swap(matrix[i][j], matrix[j][i]);
}
}
这是一个如今被高估的面试问题。
我的建议是:不要让面试官用他们关于解决这个问题的疯狂建议把你弄糊涂了。使用白板绘制输入数组的索引,然后绘制输出数组的索引。旋转前后的列分度示例如下:
30 --> 00
20 --> 01
10 --> 02
00 --> 03
31 --> 10
21 --> 11
11 --> 12
01 --> 13
注意旋转后的数字模式。
下面提供了一个简洁的Java解决方案。经过测试,它是有效的:
Input:
M A C P
B N L D
Y E T S
I W R Z
Output:
I Y B M
W E N A
R T L C
Z S D P
/**
* (c) @author "G A N MOHIM"
* Oct 3, 2015
* RotateArrayNintyDegree.java
*/
package rotatearray;
public class RotateArrayNintyDegree {
public char[][] rotateArrayNinetyDegree(char[][] input) {
int k; // k is used to generate index for output array
char[][] output = new char[input.length] [input[0].length];
for (int i = 0; i < input.length; i++) {
k = 0;
for (int j = input.length-1; j >= 0; j--) {
output[i][k] = input[j][i]; // note how i is used as column index, and j as row
k++;
}
}
return output;
}
public void printArray(char[][] charArray) {
for (int i = 0; i < charArray.length; i++) {
for (int j = 0; j < charArray[0].length; j++) {
System.out.print(charArray[i][j] + " ");
}
System.out.println();
}
}
public static void main(String[] args) {
char[][] input =
{ {'M', 'A', 'C', 'P'},
{'B', 'N', 'L', 'D'},
{'Y', 'E', 'T', 'S'},
{'I', 'W', 'R', 'Z'}
};
char[][] output = new char[input.length] [input[0].length];
RotateArrayNintyDegree rotationObj = new RotateArrayNintyDegree();
rotationObj.printArray(input);
System.out.println("\n");
output = rotationObj.rotateArrayNinetyDegree(input);
rotationObj.printArray(output);
}
}
O(1)内存算法:
旋转最外层的数据,然后你可以得到以下结果: [3] [9] [5] [1] [4] [6] [7] [2] [5] [0] [1] [3] [6] [2] [8] [4]
做这个旋转,我们知道
dest[j][n-1-i] = src[i][j]
观察下图: A (0,0) -> A (0,3) A (0,3) -> A (3,3) A (3,3) -> A (3,0) A (3,0) -> A (0,0)
因此它是一个圆,你可以在一个循环中旋转N个元素。做这个N-1循环,然后你可以旋转最外层的元素。
对于2X2,内部也是一样的问题。
因此,我们可以得出如下结论:
function rotate(array, N)
{
Rotate outer-most data
rotate a new array with N-2 or you can do the similar action following step1
}
对于i:= 0到X 对于j:= 0到X做 [j][i]:= graphic2[X-i][j]
X是图形所在数组的大小。