受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

#转置是Ruby的Array类的标准方法,因此:

% irb
irb(main):001:0> m = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]
=> [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]] 
irb(main):002:0> m.reverse.transpose
=> [[3, 9, 5, 1], [4, 0, 6, 2], [5, 1, 7, 3], [6, 2, 8, 4]]

实现是一个用c写的n^2转置函数,你可以在这里看到: http://www.ruby-doc.org/core-1.9.3/Array.html#method-i-transpose 通过选择“点击切换源”旁边的“转置”。

我记得比O(n^2)的解更好,但只适用于特殊构造的矩阵(如稀疏矩阵)

其他回答

ruby方式:.transpose。地图&:反向

O(1)内存算法:

旋转最外层的数据,然后你可以得到以下结果: [3] [9] [5] [1] [4] [6] [7] [2] [5] [0] [1] [3] [6] [2] [8] [4]

做这个旋转,我们知道

    dest[j][n-1-i] = src[i][j]

观察下图: A (0,0) -> A (0,3) A (0,3) -> A (3,3) A (3,3) -> A (3,0) A (3,0) -> A (0,0)

因此它是一个圆,你可以在一个循环中旋转N个元素。做这个N-1循环,然后你可以旋转最外层的元素。

对于2X2,内部也是一样的问题。

因此,我们可以得出如下结论:

function rotate(array, N)
{
    Rotate outer-most data
    rotate a new array with N-2 or you can do the similar action following step1
}

在Eigen (c++)中:

Eigen::Matrix2d mat;
mat <<  1, 2,
        3, 4;
std::cout << mat << "\n\n";

Eigen::Matrix2d r_plus_90 = mat.transpose().rowwise().reverse();
std::cout << r_plus_90 << "\n\n";

Eigen::Matrix2d r_minus_90 = mat.transpose().colwise().reverse();
std::cout << r_minus_90 << "\n\n";

Eigen::Matrix2d r_180 = mat.colwise().reverse().rowwise().reverse(); // +180 same as -180
std::cout << r_180 << "\n\n";

输出:

1 2
3 4

3 1
4 2

2 4
1 3

4 3
2 1

顺时针或逆时针旋转2D数组的常用方法。

顺时针旋转 首先颠倒上下,然后交换对称 1 2 3 7 8 9 7 4 4 5 6 => 4 5 6 => 8 5 7 8 9 1 2 3 9 6 3

void rotate(vector<vector<int> > &matrix) {
    reverse(matrix.begin(), matrix.end());
    for (int i = 0; i < matrix.size(); ++i) {
        for (int j = i + 1; j < matrix[i].size(); ++j)
            swap(matrix[i][j], matrix[j][i]);
    }
}

逆时针方向旋转 首先从左到右反向,然后交换对称 1 2 3 3 2 1 3 6 9 4 5 6 => 6 5 4 => 2 5 7 8 9 9 8 7 1 4 7

void anti_rotate(vector<vector<int> > &matrix) {
    for (auto vi : matrix) reverse(vi.begin(), vi.end());
    for (int i = 0; i < matrix.size(); ++i) {
        for (int j = i + 1; j < matrix[i].size(); ++j)
            swap(matrix[i][j], matrix[j][i]);
    }
}

一些人已经举了一些例子,其中涉及到创建一个新数组。

还有一些需要考虑的事情:

(a)不实际移动数据,只需以不同的方式遍历“旋转”的数组。

(b)就地轮换可能有点棘手。您需要一点空白的地方(大概相当于一行或一列的大小)。有一篇古老的ACM论文是关于进行原地转置的(http://doi.acm.org/10.1145/355719.355729),但是他们的示例代码是令人讨厌的充满goto的FORTRAN。

附录:

http://doi.acm.org/10.1145/355611.355612是另一种更优越的就地转置算法。