受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

#转置是Ruby的Array类的标准方法,因此:

% irb
irb(main):001:0> m = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]
=> [[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]] 
irb(main):002:0> m.reverse.transpose
=> [[3, 9, 5, 1], [4, 0, 6, 2], [5, 1, 7, 3], [6, 2, 8, 4]]

实现是一个用c写的n^2转置函数,你可以在这里看到: http://www.ruby-doc.org/core-1.9.3/Array.html#method-i-transpose 通过选择“点击切换源”旁边的“转置”。

我记得比O(n^2)的解更好,但只适用于特殊构造的矩阵(如稀疏矩阵)

其他回答

这是一个如今被高估的面试问题。

我的建议是:不要让面试官用他们关于解决这个问题的疯狂建议把你弄糊涂了。使用白板绘制输入数组的索引,然后绘制输出数组的索引。旋转前后的列分度示例如下:

30 --> 00
20 --> 01
10 --> 02
00 --> 03

31 --> 10
21 --> 11
11 --> 12
01 --> 13

注意旋转后的数字模式。

下面提供了一个简洁的Java解决方案。经过测试,它是有效的:

 Input:
    M A C P 
    B N L D 
    Y E T S 
    I W R Z 

    Output:
    I Y B M 
    W E N A 
    R T L C 
    Z S D P 

/**
 * (c) @author "G A N MOHIM"
 * Oct 3, 2015
 * RotateArrayNintyDegree.java
 */
package rotatearray;

public class RotateArrayNintyDegree {

    public char[][] rotateArrayNinetyDegree(char[][] input) {
        int k; // k is used to generate index for output array

        char[][] output = new char[input.length] [input[0].length];

        for (int i = 0; i < input.length; i++) {
            k = 0;
            for (int j = input.length-1; j >= 0; j--) {
                output[i][k] = input[j][i]; // note how i is used as column index, and j as row
                k++;
            }
        }

        return output;
    }

    public void printArray(char[][] charArray) {
        for (int i = 0; i < charArray.length; i++) {
            for (int j = 0; j < charArray[0].length; j++) {
                System.out.print(charArray[i][j] + " ");
            }
            System.out.println();
        }


    }

    public static void main(String[] args) {
        char[][] input = 
                { {'M', 'A', 'C', 'P'},
                  {'B', 'N', 'L', 'D'},
                  {'Y', 'E', 'T', 'S'},
                  {'I', 'W', 'R', 'Z'}
                };

        char[][] output = new char[input.length] [input[0].length];

        RotateArrayNintyDegree rotationObj = new RotateArrayNintyDegree();
        rotationObj.printArray(input);

        System.out.println("\n");
        output = rotationObj.rotateArrayNinetyDegree(input);
        rotationObj.printArray(output);

    }

}

O(1)内存算法:

旋转最外层的数据,然后你可以得到以下结果: [3] [9] [5] [1] [4] [6] [7] [2] [5] [0] [1] [3] [6] [2] [8] [4]

做这个旋转,我们知道

    dest[j][n-1-i] = src[i][j]

观察下图: A (0,0) -> A (0,3) A (0,3) -> A (3,3) A (3,3) -> A (3,0) A (3,0) -> A (0,0)

因此它是一个圆,你可以在一个循环中旋转N个元素。做这个N-1循环,然后你可以旋转最外层的元素。

对于2X2,内部也是一样的问题。

因此,我们可以得出如下结论:

function rotate(array, N)
{
    Rotate outer-most data
    rotate a new array with N-2 or you can do the similar action following step1
}

我只用一个循环就能做到。时间复杂度看起来像O(K)其中K是数组中的所有元素。 下面是我用JavaScript做的:

首先,我们用一个数组来表示n^2矩阵。然后,像这样迭代它:

/**
 * Rotates matrix 90 degrees clockwise
 * @param arr: the source array
 * @param n: the array side (array is square n^2)
 */
function rotate (arr, n) {
  var rotated = [], indexes = []

  for (var i = 0; i < arr.length; i++) {
    if (i < n)
      indexes[i] = i * n + (n - 1)
    else
      indexes[i] = indexes[i - n] - 1

    rotated[indexes[i]] = arr[i]
  }
  return rotated
}

基本上,我们转换源数组下标:

[0,1,2,3,4,5,6,7,8] => [2,5,8,1,4,7,0,3 6]

然后,使用这个转换后的索引数组,我们将实际值放在最终旋转的数组中。

下面是一些测试用例:

//n=3
rotate([
  1, 2, 3,
  4, 5, 6,
  7, 8, 9], 3))

//result:
[7, 4, 1,
 8, 5, 2,
 9, 6, 3]


//n=4
rotate([
  1,  2,  3,  4,
  5,  6,  7,  8,
  9,  10, 11, 12,
  13, 14, 15, 16], 4))

//result:
[13,  9,  5,  1,
 14, 10,  6,  2,
 15, 11,  7,  3,
 16, 12,  8,  4]


//n=5
rotate([
  1,  2,  3,  4,  5,
  6,  7,  8,  9,  10,
  11, 12, 13, 14, 15,
  16, 17, 18, 19, 20,
  21, 22, 23, 24, 25], 5))

//result:
[21, 16, 11,  6,  1, 
 22, 17, 12,  7,  2, 
 23, 18, 13,  8,  3, 
 24, 19, 14,  9,  4, 
 25, 20, 15, 10,  5]

哦,伙计。我一直认为这是一个“我很无聊,我能思考什么”的谜题。我想出了我的原地换位码,但到了这里发现你的和我的几乎一模一样……啊,好。这里是Ruby版本。

require 'pp'
n = 10
a = []
n.times { a << (1..n).to_a }

pp a

0.upto(n/2-1) do |i|
  i.upto(n-i-2) do |j|
    tmp             = a[i][j]
    a[i][j]         = a[n-j-1][i]
    a[n-j-1][i]     = a[n-i-1][n-j-1]
    a[n-i-1][n-j-1] = a[j][n-i-1]
    a[j][n-i-1]     = tmp
  end
end

pp a

矩阵转置和旋转(+/-90,+/-180)的C代码

支持方阵和非方阵,具有原位和复制功能 支持2D数组和带有逻辑行/cols的1D指针 单元测试;有关使用示例,请参阅测试 测试gcc -std=c90 -Wall -pedantic, MSVC17

`

#include <stdlib.h>
#include <memory.h>
#include <assert.h>

/* 
    Matrix transpose & rotate (+/-90, +/-180)
        Supports both 2D arrays and 1D pointers with logical rows/cols
        Supports square and non-square matrices, has in-place and copy features
        See tests for examples of usage
    tested gcc -std=c90 -Wall -pedantic, MSVC17
*/

typedef int matrix_data_t;  /* matrix data type */

void transpose(const matrix_data_t* src, matrix_data_t* dst, int rows, int cols);
void transpose_inplace(matrix_data_t* data, int n );
void rotate(int direction, const matrix_data_t* src, matrix_data_t* dst, int rows, int cols);
void rotate_inplace(int direction, matrix_data_t* data, int n);
void reverse_rows(matrix_data_t* data, int rows, int cols);
void reverse_cols(matrix_data_t* data, int rows, int cols);

/* test/compare fn */
int test_cmp(const matrix_data_t* lhs, const matrix_data_t* rhs, int rows, int cols );

/* TESTS/USAGE */
void transpose_test() {

    matrix_data_t sq3x3[9] = { 0,1,2,3,4,5,6,7,8 };/* 3x3 square, odd length side */
    matrix_data_t sq3x3_cpy[9];
    matrix_data_t sq3x3_2D[3][3] = { { 0,1,2 },{ 3,4,5 },{ 6,7,8 } };/* 2D 3x3 square */
    matrix_data_t sq3x3_2D_copy[3][3];

    /* expected test values */
    const matrix_data_t sq3x3_orig[9] = { 0,1,2,3,4,5,6,7,8 };
    const matrix_data_t sq3x3_transposed[9] = { 0,3,6,1,4,7,2,5,8};

    matrix_data_t sq4x4[16]= { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 };/* 4x4 square, even length*/
    const matrix_data_t sq4x4_orig[16] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 };
    const matrix_data_t sq4x4_transposed[16] = { 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15 };

    /* 2x3 rectangle */
    const matrix_data_t r2x3_orig[6] = { 0,1,2,3,4,5 };
    const matrix_data_t r2x3_transposed[6] = { 0,3,1,4,2,5 };
    matrix_data_t r2x3_copy[6];

    matrix_data_t r2x3_2D[2][3] = { {0,1,2},{3,4,5} };  /* 2x3 2D rectangle */
    matrix_data_t r2x3_2D_t[3][2];

    /* matrix_data_t r3x2[6] = { 0,1,2,3,4,5 }; */
    matrix_data_t r3x2_copy[6];
    /* 3x2 rectangle */
    const matrix_data_t r3x2_orig[6] = { 0,1,2,3,4,5 };
    const matrix_data_t r3x2_transposed[6] = { 0,2,4,1,3,5 };

    matrix_data_t r6x1[6] = { 0,1,2,3,4,5 };    /* 6x1 */
    matrix_data_t r6x1_copy[6];

    matrix_data_t r1x1[1] = { 0 };  /*1x1*/
    matrix_data_t r1x1_copy[1];

    /* 3x3 tests, 2D array tests */
    transpose_inplace(sq3x3, 3);    /* transpose in place */
    assert(!test_cmp(sq3x3, sq3x3_transposed, 3, 3));
    transpose_inplace(sq3x3, 3);    /* transpose again */
    assert(!test_cmp(sq3x3, sq3x3_orig, 3, 3));

    transpose(sq3x3, sq3x3_cpy, 3, 3);  /* transpose copy 3x3*/
    assert(!test_cmp(sq3x3_cpy, sq3x3_transposed, 3, 3));

    transpose((matrix_data_t*)sq3x3_2D, (matrix_data_t*)sq3x3_2D_copy, 3, 3);   /* 2D array transpose/copy */
    assert(!test_cmp((matrix_data_t*)sq3x3_2D_copy, sq3x3_transposed, 3, 3));
    transpose_inplace((matrix_data_t*)sq3x3_2D_copy, 3);    /* 2D array transpose in place */
    assert(!test_cmp((matrix_data_t*)sq3x3_2D_copy, sq3x3_orig, 3, 3));

    /* 4x4 tests */
    transpose_inplace(sq4x4, 4);    /* transpose in place */
    assert(!test_cmp(sq4x4, sq4x4_transposed, 4,4));
    transpose_inplace(sq4x4, 4);    /* transpose again */
    assert(!test_cmp(sq4x4, sq4x4_orig, 3, 3));

    /* 2x3,3x2 tests */
    transpose(r2x3_orig, r2x3_copy, 2, 3);
    assert(!test_cmp(r2x3_copy, r2x3_transposed, 3, 2));

    transpose(r3x2_orig, r3x2_copy, 3, 2);
    assert(!test_cmp(r3x2_copy, r3x2_transposed, 2,3));

    /* 2D array */
    transpose((matrix_data_t*)r2x3_2D, (matrix_data_t*)r2x3_2D_t, 2, 3);
    assert(!test_cmp((matrix_data_t*)r2x3_2D_t, r2x3_transposed, 3,2));

    /* Nx1 test, 1x1 test */
    transpose(r6x1, r6x1_copy, 6, 1);
    assert(!test_cmp(r6x1_copy, r6x1, 1, 6));

    transpose(r1x1, r1x1_copy, 1, 1);
    assert(!test_cmp(r1x1_copy, r1x1, 1, 1));

}

void rotate_test() {

    /* 3x3 square */
    const matrix_data_t sq3x3[9] = { 0,1,2,3,4,5,6,7,8 };
    const matrix_data_t sq3x3_r90[9] = { 6,3,0,7,4,1,8,5,2 };
    const matrix_data_t sq3x3_180[9] = { 8,7,6,5,4,3,2,1,0 };
    const matrix_data_t sq3x3_l90[9] = { 2,5,8,1,4,7,0,3,6 };
    matrix_data_t sq3x3_copy[9];

    /* 3x3 square, 2D */
    matrix_data_t sq3x3_2D[3][3] = { { 0,1,2 },{ 3,4,5 },{ 6,7,8 } };

    /* 4x4, 2D */
    matrix_data_t sq4x4[4][4] = { { 0,1,2,3 },{ 4,5,6,7 },{ 8,9,10,11 },{ 12,13,14,15 } };
    matrix_data_t sq4x4_copy[4][4];
    const matrix_data_t sq4x4_r90[16] = { 12,8,4,0,13,9,5,1,14,10,6,2,15,11,7,3 };
    const matrix_data_t sq4x4_l90[16] = { 3,7,11,15,2,6,10,14,1,5,9,13,0,4,8,12 };
    const matrix_data_t sq4x4_180[16] = { 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 };

    matrix_data_t r6[6] = { 0,1,2,3,4,5 };  /* rectangle with area of 6 (1x6,2x3,3x2, or 6x1) */
    matrix_data_t r6_copy[6];
    const matrix_data_t r1x6_r90[6] = { 0,1,2,3,4,5 };
    const matrix_data_t r1x6_l90[6] = { 5,4,3,2,1,0 };
    const matrix_data_t r1x6_180[6] = { 5,4,3,2,1,0 };

    const matrix_data_t r2x3_r90[6] = { 3,0,4,1,5,2 };
    const matrix_data_t r2x3_l90[6] = { 2,5,1,4,0,3 };
    const matrix_data_t r2x3_180[6] = { 5,4,3,2,1,0 };

    const matrix_data_t r3x2_r90[6] = { 4,2,0,5,3,1 };
    const matrix_data_t r3x2_l90[6] = { 1,3,5,0,2,4 };
    const matrix_data_t r3x2_180[6] = { 5,4,3,2,1,0 };

    const matrix_data_t r6x1_r90[6] = { 5,4,3,2,1,0 };
    const matrix_data_t r6x1_l90[6] = { 0,1,2,3,4,5 };
    const matrix_data_t r6x1_180[6] = { 5,4,3,2,1,0 };

    /* sq3x3 tests */
    rotate(90, sq3x3, sq3x3_copy, 3, 3);    /* +90 */
    assert(!test_cmp(sq3x3_copy, sq3x3_r90, 3, 3));
    rotate(-90, sq3x3, sq3x3_copy, 3, 3);   /* -90 */
    assert(!test_cmp(sq3x3_copy, sq3x3_l90, 3, 3));
    rotate(180, sq3x3, sq3x3_copy, 3, 3);   /* 180 */
    assert(!test_cmp(sq3x3_copy, sq3x3_180, 3, 3));
    /* sq3x3 in-place rotations */
    memcpy( sq3x3_copy, sq3x3, 3 * 3 * sizeof(matrix_data_t));
    rotate_inplace(90, sq3x3_copy, 3);
    assert(!test_cmp(sq3x3_copy, sq3x3_r90, 3, 3));
    rotate_inplace(-90, sq3x3_copy, 3);
    assert(!test_cmp(sq3x3_copy, sq3x3, 3, 3)); /* back to 0 orientation */
    rotate_inplace(180, sq3x3_copy, 3);
    assert(!test_cmp(sq3x3_copy, sq3x3_180, 3, 3));
    rotate_inplace(-180, sq3x3_copy, 3);
    assert(!test_cmp(sq3x3_copy, sq3x3, 3, 3));
    rotate_inplace(180, (matrix_data_t*)sq3x3_2D, 3);/* 2D test */
    assert(!test_cmp((matrix_data_t*)sq3x3_2D, sq3x3_180, 3, 3));

    /* sq4x4 */
    rotate(90, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
    assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_r90, 4, 4));
    rotate(-90, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
    assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_l90, 4, 4));
    rotate(180, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
    assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_180, 4, 4));

    /* r6 as 1x6 */
    rotate(90, r6, r6_copy, 1, 6);
    assert(!test_cmp(r6_copy, r1x6_r90, 1, 6));
    rotate(-90, r6, r6_copy, 1, 6);
    assert(!test_cmp(r6_copy, r1x6_l90, 1, 6));
    rotate(180, r6, r6_copy, 1, 6);
    assert(!test_cmp(r6_copy, r1x6_180, 1, 6));

    /* r6 as 2x3 */
    rotate(90, r6, r6_copy, 2, 3);
    assert(!test_cmp(r6_copy, r2x3_r90, 2, 3));
    rotate(-90, r6, r6_copy, 2, 3);
    assert(!test_cmp(r6_copy, r2x3_l90, 2, 3));
    rotate(180, r6, r6_copy, 2, 3);
    assert(!test_cmp(r6_copy, r2x3_180, 2, 3));

    /* r6 as 3x2 */
    rotate(90, r6, r6_copy, 3, 2);
    assert(!test_cmp(r6_copy, r3x2_r90, 3, 2));
    rotate(-90, r6, r6_copy, 3, 2);
    assert(!test_cmp(r6_copy, r3x2_l90, 3, 2));
    rotate(180, r6, r6_copy, 3, 2);
    assert(!test_cmp(r6_copy, r3x2_180, 3, 2));

    /* r6 as 6x1 */
    rotate(90, r6, r6_copy, 6, 1);
    assert(!test_cmp(r6_copy, r6x1_r90, 6, 1));
    rotate(-90, r6, r6_copy, 6, 1);
    assert(!test_cmp(r6_copy, r6x1_l90, 6, 1));
    rotate(180, r6, r6_copy, 6, 1);
    assert(!test_cmp(r6_copy, r6x1_180, 6, 1));
}

/* test comparison fn, return 0 on match else non zero */
int test_cmp(const matrix_data_t* lhs, const matrix_data_t* rhs, int rows, int cols) {

    int r, c;

    for (r = 0; r < rows; ++r) {
        for (c = 0; c < cols; ++c) {
            if ((lhs + r * cols)[c] != (rhs + r * cols)[c])
                return -1;
        }
    }
    return 0;
}

/*
Reverse values in place of each row in 2D matrix data[rows][cols] or in 1D pointer with logical rows/cols
[A B C] ->  [C B A]
[D E F]     [F E D]
*/
void reverse_rows(matrix_data_t* data, int rows, int cols) {

    int r, c;
    matrix_data_t temp;
    matrix_data_t* pRow = NULL;

    for (r = 0; r < rows; ++r) {
        pRow = (data + r * cols);
        for (c = 0; c < (int)(cols / 2); ++c) { /* explicit truncate */
            temp = pRow[c];
            pRow[c] = pRow[cols - 1 - c];
            pRow[cols - 1 - c] = temp;
        }
    }
}

/*
Reverse values in place of each column in 2D matrix data[rows][cols] or in 1D pointer with logical rows/cols
[A B C] ->  [D E F]
[D E F]     [A B C]
*/
void reverse_cols(matrix_data_t* data, int rows, int cols) {

    int r, c;
    matrix_data_t temp;
    matrix_data_t* pRowA = NULL;
    matrix_data_t* pRowB = NULL;

    for (c = 0; c < cols; ++c) {
        for (r = 0; r < (int)(rows / 2); ++r) { /* explicit truncate */
            pRowA = data + r * cols;
            pRowB = data + cols * (rows - 1 - r);
            temp = pRowA[c];
            pRowA[c] = pRowB[c];
            pRowB[c] = temp;
        }
    }
}

/* Transpose NxM matrix to MxN matrix in O(n) time */
void transpose(const matrix_data_t* src, matrix_data_t* dst, int N, int M) {

    int i;
    for (i = 0; i<N*M; ++i) dst[(i%M)*N + (i / M)] = src[i];    /* one-liner version */

    /*
    expanded version of one-liner:  calculate XY based on array index, then convert that to YX array index
    int i,j,x,y;
    for (i = 0; i < N*M; ++i) {
    x = i % M;
    y = (int)(i / M);
    j = x * N + y;
    dst[j] = src[i];
    }
    */

    /*
    nested for loop version
    using ptr arithmetic to get proper row/column
    this is really just dst[col][row]=src[row][col]

    int r, c;

    for (r = 0; r < rows; ++r) {
        for (c = 0; c < cols; ++c) {
            (dst + c * rows)[r] = (src + r * cols)[c];
        }
    }
    */
}

/*
Transpose NxN matrix in place
*/
void transpose_inplace(matrix_data_t* data, int N ) {

    int r, c;
    matrix_data_t temp;

    for (r = 0; r < N; ++r) {
        for (c = r; c < N; ++c) { /*start at column=row*/
                                    /* using ptr arithmetic to get proper row/column */
                                    /* this is really just
                                    temp=dst[col][row];
                                    dst[col][row]=src[row][col];
                                    src[row][col]=temp;
                                    */
            temp = (data + c * N)[r];
            (data + c * N)[r] = (data + r * N)[c];
            (data + r * N)[c] = temp;
        }
    }
}

/*
Rotate 1D or 2D src matrix to dst matrix in a direction (90,180,-90)
Precondition:  src and dst are 2d matrices with dimensions src[rows][cols] and dst[cols][rows] or 1D pointers with logical rows/cols
*/
void rotate(int direction, const matrix_data_t* src, matrix_data_t* dst, int rows, int cols) {

    switch (direction) {
    case -90:
        transpose(src, dst, rows, cols);
        reverse_cols(dst, cols, rows);
        break;
    case 90:
        transpose(src, dst, rows, cols);
        reverse_rows(dst, cols, rows);
        break;
    case 180:
    case -180:
        /* bit copy to dst, use in-place reversals */
        memcpy(dst, src, rows*cols*sizeof(matrix_data_t));
        reverse_cols(dst, cols, rows);
        reverse_rows(dst, cols, rows);
        break;
    }
}

/*
Rotate array in a direction.
Array must be NxN 2D or 1D array with logical rows/cols
Direction can be (90,180,-90,-180)
*/
void rotate_inplace( int direction, matrix_data_t* data, int n) {

    switch (direction) {
    case -90:
        transpose_inplace(data, n);
        reverse_cols(data, n, n);
        break;
    case 90:
        transpose_inplace(data, n);
        reverse_rows(data, n, n);
        break;
    case 180:
    case -180:
        reverse_cols(data, n, n);
        reverse_rows(data, n, n);
        break;
    }
}

`