受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
矩阵转置和旋转(+/-90,+/-180)的C代码
支持方阵和非方阵,具有原位和复制功能 支持2D数组和带有逻辑行/cols的1D指针 单元测试;有关使用示例,请参阅测试 测试gcc -std=c90 -Wall -pedantic, MSVC17
`
#include <stdlib.h>
#include <memory.h>
#include <assert.h>
/*
Matrix transpose & rotate (+/-90, +/-180)
Supports both 2D arrays and 1D pointers with logical rows/cols
Supports square and non-square matrices, has in-place and copy features
See tests for examples of usage
tested gcc -std=c90 -Wall -pedantic, MSVC17
*/
typedef int matrix_data_t; /* matrix data type */
void transpose(const matrix_data_t* src, matrix_data_t* dst, int rows, int cols);
void transpose_inplace(matrix_data_t* data, int n );
void rotate(int direction, const matrix_data_t* src, matrix_data_t* dst, int rows, int cols);
void rotate_inplace(int direction, matrix_data_t* data, int n);
void reverse_rows(matrix_data_t* data, int rows, int cols);
void reverse_cols(matrix_data_t* data, int rows, int cols);
/* test/compare fn */
int test_cmp(const matrix_data_t* lhs, const matrix_data_t* rhs, int rows, int cols );
/* TESTS/USAGE */
void transpose_test() {
matrix_data_t sq3x3[9] = { 0,1,2,3,4,5,6,7,8 };/* 3x3 square, odd length side */
matrix_data_t sq3x3_cpy[9];
matrix_data_t sq3x3_2D[3][3] = { { 0,1,2 },{ 3,4,5 },{ 6,7,8 } };/* 2D 3x3 square */
matrix_data_t sq3x3_2D_copy[3][3];
/* expected test values */
const matrix_data_t sq3x3_orig[9] = { 0,1,2,3,4,5,6,7,8 };
const matrix_data_t sq3x3_transposed[9] = { 0,3,6,1,4,7,2,5,8};
matrix_data_t sq4x4[16]= { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 };/* 4x4 square, even length*/
const matrix_data_t sq4x4_orig[16] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 };
const matrix_data_t sq4x4_transposed[16] = { 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15 };
/* 2x3 rectangle */
const matrix_data_t r2x3_orig[6] = { 0,1,2,3,4,5 };
const matrix_data_t r2x3_transposed[6] = { 0,3,1,4,2,5 };
matrix_data_t r2x3_copy[6];
matrix_data_t r2x3_2D[2][3] = { {0,1,2},{3,4,5} }; /* 2x3 2D rectangle */
matrix_data_t r2x3_2D_t[3][2];
/* matrix_data_t r3x2[6] = { 0,1,2,3,4,5 }; */
matrix_data_t r3x2_copy[6];
/* 3x2 rectangle */
const matrix_data_t r3x2_orig[6] = { 0,1,2,3,4,5 };
const matrix_data_t r3x2_transposed[6] = { 0,2,4,1,3,5 };
matrix_data_t r6x1[6] = { 0,1,2,3,4,5 }; /* 6x1 */
matrix_data_t r6x1_copy[6];
matrix_data_t r1x1[1] = { 0 }; /*1x1*/
matrix_data_t r1x1_copy[1];
/* 3x3 tests, 2D array tests */
transpose_inplace(sq3x3, 3); /* transpose in place */
assert(!test_cmp(sq3x3, sq3x3_transposed, 3, 3));
transpose_inplace(sq3x3, 3); /* transpose again */
assert(!test_cmp(sq3x3, sq3x3_orig, 3, 3));
transpose(sq3x3, sq3x3_cpy, 3, 3); /* transpose copy 3x3*/
assert(!test_cmp(sq3x3_cpy, sq3x3_transposed, 3, 3));
transpose((matrix_data_t*)sq3x3_2D, (matrix_data_t*)sq3x3_2D_copy, 3, 3); /* 2D array transpose/copy */
assert(!test_cmp((matrix_data_t*)sq3x3_2D_copy, sq3x3_transposed, 3, 3));
transpose_inplace((matrix_data_t*)sq3x3_2D_copy, 3); /* 2D array transpose in place */
assert(!test_cmp((matrix_data_t*)sq3x3_2D_copy, sq3x3_orig, 3, 3));
/* 4x4 tests */
transpose_inplace(sq4x4, 4); /* transpose in place */
assert(!test_cmp(sq4x4, sq4x4_transposed, 4,4));
transpose_inplace(sq4x4, 4); /* transpose again */
assert(!test_cmp(sq4x4, sq4x4_orig, 3, 3));
/* 2x3,3x2 tests */
transpose(r2x3_orig, r2x3_copy, 2, 3);
assert(!test_cmp(r2x3_copy, r2x3_transposed, 3, 2));
transpose(r3x2_orig, r3x2_copy, 3, 2);
assert(!test_cmp(r3x2_copy, r3x2_transposed, 2,3));
/* 2D array */
transpose((matrix_data_t*)r2x3_2D, (matrix_data_t*)r2x3_2D_t, 2, 3);
assert(!test_cmp((matrix_data_t*)r2x3_2D_t, r2x3_transposed, 3,2));
/* Nx1 test, 1x1 test */
transpose(r6x1, r6x1_copy, 6, 1);
assert(!test_cmp(r6x1_copy, r6x1, 1, 6));
transpose(r1x1, r1x1_copy, 1, 1);
assert(!test_cmp(r1x1_copy, r1x1, 1, 1));
}
void rotate_test() {
/* 3x3 square */
const matrix_data_t sq3x3[9] = { 0,1,2,3,4,5,6,7,8 };
const matrix_data_t sq3x3_r90[9] = { 6,3,0,7,4,1,8,5,2 };
const matrix_data_t sq3x3_180[9] = { 8,7,6,5,4,3,2,1,0 };
const matrix_data_t sq3x3_l90[9] = { 2,5,8,1,4,7,0,3,6 };
matrix_data_t sq3x3_copy[9];
/* 3x3 square, 2D */
matrix_data_t sq3x3_2D[3][3] = { { 0,1,2 },{ 3,4,5 },{ 6,7,8 } };
/* 4x4, 2D */
matrix_data_t sq4x4[4][4] = { { 0,1,2,3 },{ 4,5,6,7 },{ 8,9,10,11 },{ 12,13,14,15 } };
matrix_data_t sq4x4_copy[4][4];
const matrix_data_t sq4x4_r90[16] = { 12,8,4,0,13,9,5,1,14,10,6,2,15,11,7,3 };
const matrix_data_t sq4x4_l90[16] = { 3,7,11,15,2,6,10,14,1,5,9,13,0,4,8,12 };
const matrix_data_t sq4x4_180[16] = { 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 };
matrix_data_t r6[6] = { 0,1,2,3,4,5 }; /* rectangle with area of 6 (1x6,2x3,3x2, or 6x1) */
matrix_data_t r6_copy[6];
const matrix_data_t r1x6_r90[6] = { 0,1,2,3,4,5 };
const matrix_data_t r1x6_l90[6] = { 5,4,3,2,1,0 };
const matrix_data_t r1x6_180[6] = { 5,4,3,2,1,0 };
const matrix_data_t r2x3_r90[6] = { 3,0,4,1,5,2 };
const matrix_data_t r2x3_l90[6] = { 2,5,1,4,0,3 };
const matrix_data_t r2x3_180[6] = { 5,4,3,2,1,0 };
const matrix_data_t r3x2_r90[6] = { 4,2,0,5,3,1 };
const matrix_data_t r3x2_l90[6] = { 1,3,5,0,2,4 };
const matrix_data_t r3x2_180[6] = { 5,4,3,2,1,0 };
const matrix_data_t r6x1_r90[6] = { 5,4,3,2,1,0 };
const matrix_data_t r6x1_l90[6] = { 0,1,2,3,4,5 };
const matrix_data_t r6x1_180[6] = { 5,4,3,2,1,0 };
/* sq3x3 tests */
rotate(90, sq3x3, sq3x3_copy, 3, 3); /* +90 */
assert(!test_cmp(sq3x3_copy, sq3x3_r90, 3, 3));
rotate(-90, sq3x3, sq3x3_copy, 3, 3); /* -90 */
assert(!test_cmp(sq3x3_copy, sq3x3_l90, 3, 3));
rotate(180, sq3x3, sq3x3_copy, 3, 3); /* 180 */
assert(!test_cmp(sq3x3_copy, sq3x3_180, 3, 3));
/* sq3x3 in-place rotations */
memcpy( sq3x3_copy, sq3x3, 3 * 3 * sizeof(matrix_data_t));
rotate_inplace(90, sq3x3_copy, 3);
assert(!test_cmp(sq3x3_copy, sq3x3_r90, 3, 3));
rotate_inplace(-90, sq3x3_copy, 3);
assert(!test_cmp(sq3x3_copy, sq3x3, 3, 3)); /* back to 0 orientation */
rotate_inplace(180, sq3x3_copy, 3);
assert(!test_cmp(sq3x3_copy, sq3x3_180, 3, 3));
rotate_inplace(-180, sq3x3_copy, 3);
assert(!test_cmp(sq3x3_copy, sq3x3, 3, 3));
rotate_inplace(180, (matrix_data_t*)sq3x3_2D, 3);/* 2D test */
assert(!test_cmp((matrix_data_t*)sq3x3_2D, sq3x3_180, 3, 3));
/* sq4x4 */
rotate(90, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_r90, 4, 4));
rotate(-90, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_l90, 4, 4));
rotate(180, (matrix_data_t*)sq4x4, (matrix_data_t*)sq4x4_copy, 4, 4);
assert(!test_cmp((matrix_data_t*)sq4x4_copy, sq4x4_180, 4, 4));
/* r6 as 1x6 */
rotate(90, r6, r6_copy, 1, 6);
assert(!test_cmp(r6_copy, r1x6_r90, 1, 6));
rotate(-90, r6, r6_copy, 1, 6);
assert(!test_cmp(r6_copy, r1x6_l90, 1, 6));
rotate(180, r6, r6_copy, 1, 6);
assert(!test_cmp(r6_copy, r1x6_180, 1, 6));
/* r6 as 2x3 */
rotate(90, r6, r6_copy, 2, 3);
assert(!test_cmp(r6_copy, r2x3_r90, 2, 3));
rotate(-90, r6, r6_copy, 2, 3);
assert(!test_cmp(r6_copy, r2x3_l90, 2, 3));
rotate(180, r6, r6_copy, 2, 3);
assert(!test_cmp(r6_copy, r2x3_180, 2, 3));
/* r6 as 3x2 */
rotate(90, r6, r6_copy, 3, 2);
assert(!test_cmp(r6_copy, r3x2_r90, 3, 2));
rotate(-90, r6, r6_copy, 3, 2);
assert(!test_cmp(r6_copy, r3x2_l90, 3, 2));
rotate(180, r6, r6_copy, 3, 2);
assert(!test_cmp(r6_copy, r3x2_180, 3, 2));
/* r6 as 6x1 */
rotate(90, r6, r6_copy, 6, 1);
assert(!test_cmp(r6_copy, r6x1_r90, 6, 1));
rotate(-90, r6, r6_copy, 6, 1);
assert(!test_cmp(r6_copy, r6x1_l90, 6, 1));
rotate(180, r6, r6_copy, 6, 1);
assert(!test_cmp(r6_copy, r6x1_180, 6, 1));
}
/* test comparison fn, return 0 on match else non zero */
int test_cmp(const matrix_data_t* lhs, const matrix_data_t* rhs, int rows, int cols) {
int r, c;
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
if ((lhs + r * cols)[c] != (rhs + r * cols)[c])
return -1;
}
}
return 0;
}
/*
Reverse values in place of each row in 2D matrix data[rows][cols] or in 1D pointer with logical rows/cols
[A B C] -> [C B A]
[D E F] [F E D]
*/
void reverse_rows(matrix_data_t* data, int rows, int cols) {
int r, c;
matrix_data_t temp;
matrix_data_t* pRow = NULL;
for (r = 0; r < rows; ++r) {
pRow = (data + r * cols);
for (c = 0; c < (int)(cols / 2); ++c) { /* explicit truncate */
temp = pRow[c];
pRow[c] = pRow[cols - 1 - c];
pRow[cols - 1 - c] = temp;
}
}
}
/*
Reverse values in place of each column in 2D matrix data[rows][cols] or in 1D pointer with logical rows/cols
[A B C] -> [D E F]
[D E F] [A B C]
*/
void reverse_cols(matrix_data_t* data, int rows, int cols) {
int r, c;
matrix_data_t temp;
matrix_data_t* pRowA = NULL;
matrix_data_t* pRowB = NULL;
for (c = 0; c < cols; ++c) {
for (r = 0; r < (int)(rows / 2); ++r) { /* explicit truncate */
pRowA = data + r * cols;
pRowB = data + cols * (rows - 1 - r);
temp = pRowA[c];
pRowA[c] = pRowB[c];
pRowB[c] = temp;
}
}
}
/* Transpose NxM matrix to MxN matrix in O(n) time */
void transpose(const matrix_data_t* src, matrix_data_t* dst, int N, int M) {
int i;
for (i = 0; i<N*M; ++i) dst[(i%M)*N + (i / M)] = src[i]; /* one-liner version */
/*
expanded version of one-liner: calculate XY based on array index, then convert that to YX array index
int i,j,x,y;
for (i = 0; i < N*M; ++i) {
x = i % M;
y = (int)(i / M);
j = x * N + y;
dst[j] = src[i];
}
*/
/*
nested for loop version
using ptr arithmetic to get proper row/column
this is really just dst[col][row]=src[row][col]
int r, c;
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
(dst + c * rows)[r] = (src + r * cols)[c];
}
}
*/
}
/*
Transpose NxN matrix in place
*/
void transpose_inplace(matrix_data_t* data, int N ) {
int r, c;
matrix_data_t temp;
for (r = 0; r < N; ++r) {
for (c = r; c < N; ++c) { /*start at column=row*/
/* using ptr arithmetic to get proper row/column */
/* this is really just
temp=dst[col][row];
dst[col][row]=src[row][col];
src[row][col]=temp;
*/
temp = (data + c * N)[r];
(data + c * N)[r] = (data + r * N)[c];
(data + r * N)[c] = temp;
}
}
}
/*
Rotate 1D or 2D src matrix to dst matrix in a direction (90,180,-90)
Precondition: src and dst are 2d matrices with dimensions src[rows][cols] and dst[cols][rows] or 1D pointers with logical rows/cols
*/
void rotate(int direction, const matrix_data_t* src, matrix_data_t* dst, int rows, int cols) {
switch (direction) {
case -90:
transpose(src, dst, rows, cols);
reverse_cols(dst, cols, rows);
break;
case 90:
transpose(src, dst, rows, cols);
reverse_rows(dst, cols, rows);
break;
case 180:
case -180:
/* bit copy to dst, use in-place reversals */
memcpy(dst, src, rows*cols*sizeof(matrix_data_t));
reverse_cols(dst, cols, rows);
reverse_rows(dst, cols, rows);
break;
}
}
/*
Rotate array in a direction.
Array must be NxN 2D or 1D array with logical rows/cols
Direction can be (90,180,-90,-180)
*/
void rotate_inplace( int direction, matrix_data_t* data, int n) {
switch (direction) {
case -90:
transpose_inplace(data, n);
reverse_cols(data, n, n);
break;
case 90:
transpose_inplace(data, n);
reverse_rows(data, n, n);
break;
case 180:
case -180:
reverse_cols(data, n, n);
reverse_rows(data, n, n);
break;
}
}
`
其他回答
基于大量的其他答案,我用c#想出了这个:
/// <param name="rotation">The number of rotations (if negative, the <see cref="Matrix{TValue}"/> is rotated counterclockwise;
/// otherwise, it's rotated clockwise). A single (positive) rotation is equivalent to 90° or -270°; a single (negative) rotation is
/// equivalent to -90° or 270°. Matrices may be rotated by 90°, 180°, or 270° only (or multiples thereof).</param>
/// <returns></returns>
public Matrix<TValue> Rotate(int rotation)
{
var result = default(Matrix<TValue>);
//This normalizes the requested rotation (for instance, if 10 is specified, the rotation is actually just +-2 or +-180°, but all
//correspond to the same rotation).
var d = rotation.ToDouble() / 4d;
d = d - (int)d;
var degree = (d - 1d) * 4d;
//This gets the type of rotation to make; there are a total of four unique rotations possible (0°, 90°, 180°, and 270°).
//Each correspond to 0, 1, 2, and 3, respectively (or 0, -1, -2, and -3, if in the other direction). Since
//1 is equivalent to -3 and so forth, we combine both cases into one.
switch (degree)
{
case -3:
case +1:
degree = 3;
break;
case -2:
case +2:
degree = 2;
break;
case -1:
case +3:
degree = 1;
break;
case -4:
case 0:
case +4:
degree = 0;
break;
}
switch (degree)
{
//The rotation is 0, +-180°
case 0:
case 2:
result = new TValue[Rows, Columns];
break;
//The rotation is +-90°
case 1:
case 3:
result = new TValue[Columns, Rows];
break;
}
for (uint i = 0; i < Columns; ++i)
{
for (uint j = 0; j < Rows; ++j)
{
switch (degree)
{
//If rotation is 0°
case 0:
result._values[j][i] = _values[j][i];
break;
//If rotation is -90°
case 1:
//Transpose, then reverse each column OR reverse each row, then transpose
result._values[i][j] = _values[j][Columns - i - 1];
break;
//If rotation is +-180°
case 2:
//Reverse each column, then reverse each row
result._values[(Rows - 1) - j][(Columns - 1) - i] = _values[j][i];
break;
//If rotation is +90°
case 3:
//Transpose, then reverse each row
result._values[i][j] = _values[Rows - j - 1][i];
break;
}
}
}
return result;
}
其中_values对应于由Matrix<TValue>定义的私有二维数组(形式为[][])。result = new TValue[Columns, Rows]可能通过隐式操作符重载并将二维数组转换为Matrix<TValue>。 Columns和Rows两个属性是公共属性,用于获取当前实例的列数和行数:
public uint Columns
=> (uint)_values[0].Length;
public uint Rows
=> (uint)_values.Length;
当然,假设您更喜欢使用无符号下标;-)
所有这些都允许您指定它应该旋转多少次,以及它应该向左旋转(如果小于零)还是向右旋转(如果大于零)。您可以改进此方法,以检查实际角度的旋转,但如果值不是90的倍数,则可能会抛出异常。有了这些输入,你可以相应地改变方法:
public Matrix<TValue> Rotate(int rotation)
{
var _rotation = (double)rotation / 90d;
if (_rotation - Math.Floor(_rotation) > 0)
{
throw new NotSupportedException("A matrix may only be rotated by multiples of 90.").
}
rotation = (int)_rotation;
...
}
Since a degree is more accurately expressed by double than int, but a matrix can only rotate in multiples of 90, it is far more intuitive to make the argument correspond to something else that can be accurately represented by the data structure used. int is perfect because it can tell you how many times to rotate it up to a certain unit (90) as well as the direction. double may very well be able to tell you that also, but it also includes values that aren't supported by this operation (which is inherently counter-intuitive).
下面是PHP的递归方法:
$m = array();
$m[0] = array('a', 'b', 'c');
$m[1] = array('d', 'e', 'f');
$m[2] = array('g', 'h', 'i');
$newMatrix = array();
function rotateMatrix($m, $i = 0, &$newMatrix)
{
foreach ($m as $chunk) {
$newChunk[] = $chunk[$i];
}
$newMatrix[] = array_reverse($newChunk);
$i++;
if ($i < count($m)) {
rotateMatrix($m, $i, $newMatrix);
}
}
rotateMatrix($m, 0, $newMatrix);
echo '<pre>';
var_dump($newMatrix);
echo '<pre>';
我的c#示例代码的伟大算法发送@dimple:
/* Author: Dudi,
* http://www.tutorialspoint.com/compile_csharp_online.php?PID=0Bw_CjBb95KQMYm5qU3VjVGNuZFU */
using System.IO;
using System;
class Program
{
static void Main()
{
Console.WriteLine("Rotating this matrix by 90+ degree:");
int[,] values=new int[3,3]{{1,2,3}, {4,5,6}, {7,8,9}};
//int[,] values=new int[4,4]{{101,102,103, 104}, {105,106, 107,108}, {109, 110, 111, 112}, {113, 114, 115, 116}};
print2dArray(ref values);
transpose2dArray(ref values);
//print2dArray(ref values);
reverse2dArray(ref values);
Console.WriteLine("Output:");
print2dArray(ref values);
}
static void print2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen; m++){
Console.Write(matrix[n,m] +"\t");
}
Console.WriteLine();
}
Console.WriteLine();
}
static void transpose2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen; m++){
if(n>m){
int tmp = matrix[n,m];
matrix[n,m] = matrix[m,n];
matrix[m,n] = tmp;
}
}
}
}
static void reverse2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen/2; m++){
int tmp = matrix[n,m];
matrix[n,m] = matrix[n, mLen-1-m];
matrix[n,mLen-1-m] = tmp;
}
}
}
}
/*
Rotating this matrix by 90+ degree:
1 2 3
4 5 6
7 8 9
Output:
7 4 1
8 5 2
9 6 3
*/
很好的答案,但对于那些正在寻找DRY JavaScript代码的人- +90度和-90度:
// Input: 1 2 3 // 4 5 6 // 7 8 9 // Transpose: // 1 4 7 // 2 5 8 // 3 6 9 // Output: // +90 Degree: // 7 4 1 // 8 5 2 // 9 6 3 // -90 Degree: // 3 6 9 // 2 5 8 // 1 4 7 // Rotate +90 function rotate90(matrix) { matrix = transpose(matrix); matrix.map(function(array) { array.reverse(); }); return matrix; } // Rotate -90 function counterRotate90(matrix) { var result = createEmptyMatrix(matrix.length); matrix = transpose(matrix); var counter = 0; for (var i = matrix.length - 1; i >= 0; i--) { result[counter] = matrix[i]; counter++; } return result; } // Create empty matrix function createEmptyMatrix(len) { var result = new Array(); for (var i = 0; i < len; i++) { result.push([]); } return result; } // Transpose the matrix function transpose(matrix) { // make empty array var len = matrix.length; var result = createEmptyMatrix(len); for (var i = 0; i < matrix.length; i++) { for (var j = 0; j < matrix[i].length; j++) { var temp = matrix[i][j]; result[j][i] = temp; } } return result; } // Test Cases var array1 = [ [1, 2], [3, 4] ]; var array2 = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]; var array3 = [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16] ]; // +90 degress Rotation Tests var test1 = rotate90(array1); var test2 = rotate90(array2); var test3 = rotate90(array3); console.log(test1); console.log(test2); console.log(test3); // -90 degress Rotation Tests var test1 = counterRotate90(array1); var test2 = counterRotate90(array2); var test3 = counterRotate90(array3); console.log(test1); console.log(test2); console.log(test3);
为新手程序员,在纯c++。(宝蓝的东西)
#include<iostream.h>
#include<conio.h>
int main()
{
clrscr();
int arr[10][10]; // 2d array that holds input elements
int result[10][10]; //holds result
int m,n; //rows and columns of arr[][]
int x,y; //rows and columns of result[][]
int i,j; //loop variables
int t; //temporary , holds data while conversion
cout<<"Enter no. of rows and columns of array: ";
cin>>m>>n;
cout<<"\nEnter elements of array: \n\n";
for(i = 0; i < m; i++)
{
for(j = 0; j<n ; j++)
{
cin>>arr[i][j]; // input array elements from user
}
}
//rotating matrix by +90 degrees
x = n ; //for non-square matrix
y = m ;
for(i = 0; i < x; i++)
{ t = m-1; // to create required array bounds
for(j = 0; j < y; j++)
{
result[i][j] = arr[t][i];
t--;
}
}
//print result
cout<<"\nRotated matrix is: \n\n";
for(i = 0; i < x; i++)
{
for(j = 0; j < y; j++)
{
cout<<result[i][j]<<" ";
}
cout<<"\n";
}
getch();
return 0;
}