受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
在Java中
public class Matrix {
/* Author Shrikant Dande */
private static void showMatrix(int[][] arr,int rows,int col){
for(int i =0 ;i<rows;i++){
for(int j =0 ;j<col;j++){
System.out.print(arr[i][j]+" ");
}
System.out.println();
}
}
private static void rotateMatrix(int[][] arr,int rows,int col){
int[][] tempArr = new int[4][4];
for(int i =0 ;i<rows;i++){
for(int j =0 ;j<col;j++){
tempArr[i][j] = arr[rows-1-j][i];
System.out.print(tempArr[i][j]+" ");
}
System.out.println();
}
}
public static void main(String[] args) {
int[][] arr = { {1, 2, 3, 4},
{5, 6, 7, 8},
{9, 1, 2, 5},
{7, 4, 8, 9}};
int rows = 4,col = 4;
showMatrix(arr, rows, col);
System.out.println("------------------------------------------------");
rotateMatrix(arr, rows, col);
}
}
其他回答
#!/usr/bin/env python
original = [ [1,2,3],
[4,5,6],
[7,8,9] ]
# Rotate matrix 90 degrees...
for i in map(None,*original[::-1]):
print str(i) + '\n'
这导致双方旋转90度(即。123(上面)现在是741(左边)。
这个Python解决方案是可行的,因为它使用了带负步的切片来反转行顺序(将7移到最上面)
original = [ [7,8,9],
[4,5,6],
[1,2,3] ]
然后,它使用map(以及隐含的标识函数,这是map以None作为第一个参数的结果)和*按顺序解包所有元素,重新组合列(即。第一个元素一起放在一个元组中,第二个元素一起放在一个元组中,以此类推)。你有效地得到得到返回如下重组:
original = [[7,8,9],
[4,5,6],
[1,2,3]]
O(1)内存算法:
旋转最外层的数据,然后你可以得到以下结果: [3] [9] [5] [1] [4] [6] [7] [2] [5] [0] [1] [3] [6] [2] [8] [4]
做这个旋转,我们知道
dest[j][n-1-i] = src[i][j]
观察下图: A (0,0) -> A (0,3) A (0,3) -> A (3,3) A (3,3) -> A (3,0) A (3,0) -> A (0,0)
因此它是一个圆,你可以在一个循环中旋转N个元素。做这个N-1循环,然后你可以旋转最外层的元素。
对于2X2,内部也是一样的问题。
因此,我们可以得出如下结论:
function rotate(array, N)
{
Rotate outer-most data
rotate a new array with N-2 or you can do the similar action following step1
}
在Java中
public class Matrix {
/* Author Shrikant Dande */
private static void showMatrix(int[][] arr,int rows,int col){
for(int i =0 ;i<rows;i++){
for(int j =0 ;j<col;j++){
System.out.print(arr[i][j]+" ");
}
System.out.println();
}
}
private static void rotateMatrix(int[][] arr,int rows,int col){
int[][] tempArr = new int[4][4];
for(int i =0 ;i<rows;i++){
for(int j =0 ;j<col;j++){
tempArr[i][j] = arr[rows-1-j][i];
System.out.print(tempArr[i][j]+" ");
}
System.out.println();
}
}
public static void main(String[] args) {
int[][] arr = { {1, 2, 3, 4},
{5, 6, 7, 8},
{9, 1, 2, 5},
{7, 4, 8, 9}};
int rows = 4,col = 4;
showMatrix(arr, rows, col);
System.out.println("------------------------------------------------");
rotateMatrix(arr, rows, col);
}
}
这是c#的
int[,] array = new int[4,4] {
{ 1,2,3,4 },
{ 5,6,7,8 },
{ 9,0,1,2 },
{ 3,4,5,6 }
};
int[,] rotated = RotateMatrix(array, 4);
static int[,] RotateMatrix(int[,] matrix, int n) {
int[,] ret = new int[n, n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
ret[i, j] = matrix[n - j - 1, i];
}
}
return ret;
}
这是Java中的一个更好的版本:我已经为一个具有不同宽度和高度的矩阵制作了它
H是旋转后矩阵的高度 W是旋转后矩阵的宽度
public int[][] rotateMatrixRight(int[][] matrix)
{
/* W and H are already swapped */
int w = matrix.length;
int h = matrix[0].length;
int[][] ret = new int[h][w];
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
ret[i][j] = matrix[w - j - 1][i];
}
}
return ret;
}
public int[][] rotateMatrixLeft(int[][] matrix)
{
/* W and H are already swapped */
int w = matrix.length;
int h = matrix[0].length;
int[][] ret = new int[h][w];
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
ret[i][j] = matrix[j][h - i - 1];
}
}
return ret;
}
此代码基于Nick Berardi的帖子。