受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
在Java中
public class Matrix {
/* Author Shrikant Dande */
private static void showMatrix(int[][] arr,int rows,int col){
for(int i =0 ;i<rows;i++){
for(int j =0 ;j<col;j++){
System.out.print(arr[i][j]+" ");
}
System.out.println();
}
}
private static void rotateMatrix(int[][] arr,int rows,int col){
int[][] tempArr = new int[4][4];
for(int i =0 ;i<rows;i++){
for(int j =0 ;j<col;j++){
tempArr[i][j] = arr[rows-1-j][i];
System.out.print(tempArr[i][j]+" ");
}
System.out.println();
}
}
public static void main(String[] args) {
int[][] arr = { {1, 2, 3, 4},
{5, 6, 7, 8},
{9, 1, 2, 5},
{7, 4, 8, 9}};
int rows = 4,col = 4;
showMatrix(arr, rows, col);
System.out.println("------------------------------------------------");
rotateMatrix(arr, rows, col);
}
}
其他回答
这是我在C中的就地实现
void rotateRight(int matrix[][SIZE], int length) {
int layer = 0;
for (int layer = 0; layer < length / 2; ++layer) {
int first = layer;
int last = length - 1 - layer;
for (int i = first; i < last; ++i) {
int topline = matrix[first][i];
int rightcol = matrix[i][last];
int bottomline = matrix[last][length - layer - 1 - i];
int leftcol = matrix[length - layer - 1 - i][first];
matrix[first][i] = leftcol;
matrix[i][last] = topline;
matrix[last][length - layer - 1 - i] = rightcol;
matrix[length - layer - 1 - i][first] = bottomline;
}
}
}
这是将数组旋转90度的简单C代码。希望这能有所帮助。
#include <stdio.h>
void main(){
int arr[3][4] = {85, 2, 85, 4,
85, 6, 7, 85,
9, 85, 11, 12};
int arr1[4][3];
int i = 0, j = 0;
for(i=0;i<4;i++){
int k = 2;//k = (number of columns in the new array arr1 - 1)
for(j=0;j<3;j++){
arr1[i][j]=arr[k][i];
k--;
}
}
int l, m;
for(l=0;l<4;l++){
for(m=0;m<3;m++){
printf("%d ", arr1[l][m]);
}
printf("\n");
}
}//end main
#!/usr/bin/env python
original = [ [1,2,3],
[4,5,6],
[7,8,9] ]
# Rotate matrix 90 degrees...
for i in map(None,*original[::-1]):
print str(i) + '\n'
这导致双方旋转90度(即。123(上面)现在是741(左边)。
这个Python解决方案是可行的,因为它使用了带负步的切片来反转行顺序(将7移到最上面)
original = [ [7,8,9],
[4,5,6],
[1,2,3] ]
然后,它使用map(以及隐含的标识函数,这是map以None作为第一个参数的结果)和*按顺序解包所有元素,重新组合列(即。第一个元素一起放在一个元组中,第二个元素一起放在一个元组中,以此类推)。你有效地得到得到返回如下重组:
original = [[7,8,9],
[4,5,6],
[1,2,3]]
Nick的答案也适用于NxM阵列,只需要做一点修改(与NxN相反)。
string[,] orig = new string[n, m];
string[,] rot = new string[m, n];
...
for ( int i=0; i < n; i++ )
for ( int j=0; j < m; j++ )
rot[j, n - i - 1] = orig[i, j];
考虑这个问题的一种方法是将轴(0,0)的中心从左上角移动到右上角。你只是简单地从一个转置到另一个。
这里有大量的好代码,但我只是想以几何形式展示,这样你就能更好地理解代码逻辑。以下是我的处理方法。
首先,不要把这和换位相混淆,换位是很容易的。
基本的想法是把它当作层,我们一次旋转一个层。
假设我们有一辆4x4
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
当我们顺时针旋转90度,我们得到
13 9 5 1
14 10 6 2
15 11 7 3
16 12 8 4
我们来分解它,首先旋转这四个角
1 4
13 16
然后我们旋转下面这个有点歪斜的菱形
2
8
9
15
然后是第二个斜菱形
3
5
12
14
这就搞定了外缘基本上我们一次做一个壳层直到
最后是中间的方块(如果是奇数则是最后一个不动的元素)
6 7
10 11
现在我们来算出每一层的指标,假设我们总是在最外层工作,我们正在做
[0,0] -> [0,n-1], [0,n-1] -> [n-1,n-1], [n-1,n-1] -> [n-1,0], and [n-1,0] -> [0,0]
[0,1] -> [1,n-1], [1,n-2] -> [n-1,n-2], [n-1,n-2] -> [n-2,0], and [n-2,0] -> [0,1]
[0,2] -> [2,n-2], [2,n-2] -> [n-1,n-3], [n-1,n-3] -> [n-3,0], and [n-3,0] -> [0,2]
等等等等 直到我们走到边缘的一半
所以总的来说模式是
[0,i] -> [i,n-i], [i,n-i] -> [n-1,n-(i+1)], [n-1,n-(i+1)] -> [n-(i+1),0], and [n-(i+1),0] to [0,i]