受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

在Java中

public class Matrix {
/* Author Shrikant Dande */
private static void showMatrix(int[][] arr,int rows,int col){

    for(int i =0 ;i<rows;i++){
        for(int j =0 ;j<col;j++){
            System.out.print(arr[i][j]+" ");
        }
        System.out.println();
    }

}

private static void rotateMatrix(int[][] arr,int rows,int col){

    int[][] tempArr = new int[4][4];
    for(int i =0 ;i<rows;i++){
        for(int j =0 ;j<col;j++){
            tempArr[i][j] = arr[rows-1-j][i];
            System.out.print(tempArr[i][j]+" ");
        }
        System.out.println();
    }

}
public static void main(String[] args) {
    int[][] arr = { {1,  2,  3,  4},
             {5,  6,  7,  8},
             {9,  1, 2, 5},
             {7, 4, 8, 9}};
    int rows = 4,col = 4;

    showMatrix(arr, rows, col);
    System.out.println("------------------------------------------------");
    rotateMatrix(arr, rows, col);

}

}

其他回答

#!/usr/bin/env python

original = [ [1,2,3],
             [4,5,6],
             [7,8,9] ]

# Rotate matrix 90 degrees...
for i in map(None,*original[::-1]):
    print str(i) + '\n'

这导致双方旋转90度(即。123(上面)现在是741(左边)。

这个Python解决方案是可行的,因为它使用了带负步的切片来反转行顺序(将7移到最上面)

original = [ [7,8,9],
             [4,5,6],
             [1,2,3] ]

然后,它使用map(以及隐含的标识函数,这是map以None作为第一个参数的结果)和*按顺序解包所有元素,重新组合列(即。第一个元素一起放在一个元组中,第二个元素一起放在一个元组中,以此类推)。你有效地得到得到返回如下重组:

original = [[7,8,9],
             [4,5,6],
             [1,2,3]]

当前所有的解决方案都有O(n^2)开销作为临时空间(这不包括那些肮脏的OOP骗子!)这里有一个内存占用为O(1)的解决方案,将矩阵原地右转90度。该死的延展性,这玩意儿跑得很快!

#include <algorithm>
#include <cstddef>

// Rotates an NxN matrix of type T 90 degrees to the right.
template <typename T, size_t N>
void rotate_matrix(T (&matrix)[N][N])
{
    for(size_t i = 0; i < N; ++i)
        for(size_t j = 0; j <= (N-i); ++j)
            std::swap(matrix[i][j], matrix[j][i]);
}

免责声明:我实际上并没有测试这个。让我们玩打虫游戏吧!

为新手程序员,在纯c++。(宝蓝的东西)

#include<iostream.h>
#include<conio.h>

int main()
{
    clrscr();

    int arr[10][10];        // 2d array that holds input elements 
    int result[10][10];     //holds result

    int m,n;                //rows and columns of arr[][]
    int x,y;                //rows and columns of result[][]

    int i,j;                //loop variables
    int t;                  //temporary , holds data while conversion

    cout<<"Enter no. of rows and columns of array: ";
    cin>>m>>n;
    cout<<"\nEnter elements of array: \n\n";
    for(i = 0; i < m; i++)
    {
        for(j = 0; j<n ; j++)
        {
          cin>>arr[i][j];         // input array elements from user
        }
    }


   //rotating matrix by +90 degrees

    x = n ;                      //for non-square matrix
    y = m ;     

    for(i = 0; i < x; i++)
    {  t = m-1;                     // to create required array bounds
       for(j = 0; j < y; j++)
       {
          result[i][j] = arr[t][i];
          t--;
       }
   }

   //print result

   cout<<"\nRotated matrix is: \n\n";
   for(i = 0; i < x; i++)
   {
       for(j = 0; j < y; j++)
       {
             cout<<result[i][j]<<" ";
       }
       cout<<"\n";
   }

   getch();
   return 0;
}

你可以通过3个简单步骤做到这一点:

1)假设我们有一个矩阵

   1 2 3
   4 5 6
   7 8 9

2)求矩阵的转置

   1 4 7
   2 5 8
   3 6 9

3)交换行得到旋转矩阵

   3 6 9
   2 5 8
   1 4 7

Java源代码:

public class MyClass {

    public static void main(String args[]) {
        Demo obj = new Demo();
        /*initial matrix to rotate*/
        int[][] matrix = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
        int[][] transpose = new int[3][3]; // matrix to store transpose

        obj.display(matrix);              // initial matrix

        obj.rotate(matrix, transpose);    // call rotate method
        System.out.println();
        obj.display(transpose);           // display the rotated matix
    }
}

class Demo {   
    public void rotate(int[][] mat, int[][] tran) {

        /* First take the transpose of the matrix */
        for (int i = 0; i < mat.length; i++) {
            for (int j = 0; j < mat.length; j++) {
                tran[i][j] = mat[j][i]; 
            }
        }

        /*
         * Interchange the rows of the transpose matrix to get rotated
         * matrix
         */
        for (int i = 0, j = tran.length - 1; i != j; i++, j--) {
            for (int k = 0; k < tran.length; k++) {
                swap(i, k, j, k, tran);
            }
        }
    }

    public void swap(int a, int b, int c, int d, int[][] arr) {
        int temp = arr[a][b];
        arr[a][b] = arr[c][d];
        arr[c][d] = temp;    
    }

    /* Method to display the matrix */
    public void display(int[][] arr) {
        for (int i = 0; i < arr.length; i++) {
            for (int j = 0; j < arr.length; j++) {
                System.out.print(arr[i][j] + " ");
            }
            System.out.println();
        }
    }
}

输出:

1 2 3 
4 5 6 
7 8 9 

3 6 9 
2 5 8 
1 4 7 

在Eigen (c++)中:

Eigen::Matrix2d mat;
mat <<  1, 2,
        3, 4;
std::cout << mat << "\n\n";

Eigen::Matrix2d r_plus_90 = mat.transpose().rowwise().reverse();
std::cout << r_plus_90 << "\n\n";

Eigen::Matrix2d r_minus_90 = mat.transpose().colwise().reverse();
std::cout << r_minus_90 << "\n\n";

Eigen::Matrix2d r_180 = mat.colwise().reverse().rowwise().reverse(); // +180 same as -180
std::cout << r_180 << "\n\n";

输出:

1 2
3 4

3 1
4 2

2 4
1 3

4 3
2 1