受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
这是一个空间旋转方法,由java编写,只适用于正方形。对于非正方形的2d数组,无论如何都必须创建新数组。
private void rotateInSpace(int[][] arr) {
int z = arr.length;
for (int i = 0; i < z / 2; i++) {
for (int j = 0; j < (z / 2 + z % 2); j++) {
int x = i, y = j;
int temp = arr[x][y];
for (int k = 0; k < 4; k++) {
int temptemp = arr[y][z - x - 1];
arr[y][z - x - 1] = temp;
temp = temptemp;
int tempX = y;
y = z - x - 1;
x = tempX;
}
}
}
}
通过创建新数组旋转任何大小的2d数组的代码:
private int[][] rotate(int[][] arr) {
int width = arr[0].length;
int depth = arr.length;
int[][] re = new int[width][depth];
for (int i = 0; i < depth; i++) {
for (int j = 0; j < width; j++) {
re[j][depth - i - 1] = arr[i][j];
}
}
return re;
}
其他回答
顺时针或逆时针旋转2D数组的常用方法。
顺时针旋转 首先颠倒上下,然后交换对称 1 2 3 7 8 9 7 4 4 5 6 => 4 5 6 => 8 5 7 8 9 1 2 3 9 6 3
void rotate(vector<vector<int> > &matrix) {
reverse(matrix.begin(), matrix.end());
for (int i = 0; i < matrix.size(); ++i) {
for (int j = i + 1; j < matrix[i].size(); ++j)
swap(matrix[i][j], matrix[j][i]);
}
}
逆时针方向旋转 首先从左到右反向,然后交换对称 1 2 3 3 2 1 3 6 9 4 5 6 => 6 5 4 => 2 5 7 8 9 9 8 7 1 4 7
void anti_rotate(vector<vector<int> > &matrix) {
for (auto vi : matrix) reverse(vi.begin(), vi.end());
for (int i = 0; i < matrix.size(); ++i) {
for (int j = i + 1; j < matrix[i].size(); ++j)
swap(matrix[i][j], matrix[j][i]);
}
}
short normal[4][4] = {{8,4,7,5},{3,4,5,7},{9,5,5,6},{3,3,3,3}};
short rotated[4][4];
for (int r = 0; r < 4; ++r)
{
for (int c = 0; c < 4; ++c)
{
rotated[r][c] = normal[c][3-r];
}
}
简单的c++方法,尽管在大数组中会有很大的内存开销。
ruby方式:.transpose。地图&:反向
我的c#示例代码的伟大算法发送@dimple:
/* Author: Dudi,
* http://www.tutorialspoint.com/compile_csharp_online.php?PID=0Bw_CjBb95KQMYm5qU3VjVGNuZFU */
using System.IO;
using System;
class Program
{
static void Main()
{
Console.WriteLine("Rotating this matrix by 90+ degree:");
int[,] values=new int[3,3]{{1,2,3}, {4,5,6}, {7,8,9}};
//int[,] values=new int[4,4]{{101,102,103, 104}, {105,106, 107,108}, {109, 110, 111, 112}, {113, 114, 115, 116}};
print2dArray(ref values);
transpose2dArray(ref values);
//print2dArray(ref values);
reverse2dArray(ref values);
Console.WriteLine("Output:");
print2dArray(ref values);
}
static void print2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen; m++){
Console.Write(matrix[n,m] +"\t");
}
Console.WriteLine();
}
Console.WriteLine();
}
static void transpose2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen; m++){
if(n>m){
int tmp = matrix[n,m];
matrix[n,m] = matrix[m,n];
matrix[m,n] = tmp;
}
}
}
}
static void reverse2dArray(ref int[,] matrix){
int nLen = matrix.GetLength(0);
int mLen = matrix.GetLength(1);
for(int n=0; n<nLen; n++){
for(int m=0; m<mLen/2; m++){
int tmp = matrix[n,m];
matrix[n,m] = matrix[n, mLen-1-m];
matrix[n,mLen-1-m] = tmp;
}
}
}
}
/*
Rotating this matrix by 90+ degree:
1 2 3
4 5 6
7 8 9
Output:
7 4 1
8 5 2
9 6 3
*/
Javascript解决NxN矩阵与运行时O(N^2)和内存O(1)
function rotate90(matrix){
var length = matrix.length
for(var row = 0; row < (length / 2); row++){
for(var col = row; col < ( length - 1 - row); col++){
var tmpVal = matrix[row][col];
for(var i = 0; i < 4; i++){
var rowSwap = col;
var colSwap = (length - 1) - row;
var poppedVal = matrix[rowSwap][colSwap];
matrix[rowSwap][colSwap] = tmpVal;
tmpVal = poppedVal;
col = colSwap;
row = rowSwap;
}
}
}
}