我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

目标-C

这适用于除“-1”以外的所有数字。

如果要从使用int转换为使用NSInt,那么可以将-1值设置为NULL,然后第二次将它们转换为+1,但我觉得NSInt欺骗了询问者的意图。


f(n):

-(int)f:(int)n {
    if (abs(n)==1) {
        n = -1;
    } else {
        if (abs(n)%2) {//o
            if (n>0) {//+
                n--;
                n*=+1;
            } else if (n<0) {//-
                n++;
                n*=+1;
            }
        } else {//e
            if (n>0) {//+
                n++;
                n*=-1;
            } else if (n<0) {//-
                n--;
                n*=-1;
            }
        }
    }
    return n;
}

当然,这一切都可以缩短为一行,但其他人可能无法阅读。。。

无论如何,我将BOOLEAN逻辑存储为奇数或偶数的状态。

其他回答

这个怎么样?

int nasty(int input)
{
    return input + INT_MAX/2;
}

没有人说它必须是无国籍的。

int32 f(int32 x) {
    static bool idempotent = false;
    if (!idempotent) {
        idempotent = true;
        return -x;
    } else {
        return x;
    }
}

作弊,但不如很多例子。更糟糕的是,查看堆栈以查看调用者的地址是否为-f,但这将更具可移植性(虽然不是线程安全的……线程安全版本将使用TLS)。更邪恶的是:

int32 f (int32 x) {
    static int32 answer = -x;
    return answer;
}

当然,对于MIN_INT32的情况,这两种方法都不太有效,但除非允许返回更宽的类型,否则对此您几乎无能为力。

f(n) { return -1 * abs(n) }

如何处理溢出问题?还是我错过了重点?

const unsigned long Magic = 0x8000000;

unsigned long f(unsigned long n)
{    
    if(n > Magic )
    {
        return Magic - n;
    }

    return n + Magic;
} 

0~2^31

C++解决方案;

long long f(int n){return static_cast <long long> (n);}
int f(long long n){return -static_cast <int> (n);}

int n = 777;
assert(f(f(n)) == -n);