我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

目标-C

这适用于除“-1”以外的所有数字。

如果要从使用int转换为使用NSInt,那么可以将-1值设置为NULL,然后第二次将它们转换为+1,但我觉得NSInt欺骗了询问者的意图。


f(n):

-(int)f:(int)n {
    if (abs(n)==1) {
        n = -1;
    } else {
        if (abs(n)%2) {//o
            if (n>0) {//+
                n--;
                n*=+1;
            } else if (n<0) {//-
                n++;
                n*=+1;
            }
        } else {//e
            if (n>0) {//+
                n++;
                n*=-1;
            } else if (n<0) {//-
                n--;
                n*=-1;
            }
        }
    }
    return n;
}

当然,这一切都可以缩短为一行,但其他人可能无法阅读。。。

无论如何,我将BOOLEAN逻辑存储为奇数或偶数的状态。

其他回答

Clojure解决方案:

(defmacro f [n]
  (if (list? n) `(- ~n) n))

也适用于任何大小的正整数和负整数、双整数和比率!

x86 asm(AT&T风格):

; input %edi
; output %eax
; clobbered regs: %ecx, %edx
f:
    testl   %edi, %edi
    je  .zero

    movl    %edi, %eax
    movl    $1, %ecx
    movl    %edi, %edx
    andl    $1, %eax
    addl    %eax, %eax
    subl    %eax, %ecx
    xorl    %eax, %eax
    testl   %edi, %edi
    setg    %al
    shrl    $31, %edx
    subl    %edx, %eax
    imull   %ecx, %eax
    subl    %eax, %edi
    movl    %edi, %eax
    imull   %ecx, %eax
.zero:
    xorl    %eax, %eax
    ret

代码已检查,所有可能的32位整数都已通过,错误为-2147483647(下溢)。

这个怎么样?

int nasty(int input)
{
    return input + INT_MAX/2;
}

Wolfram语言的解决方案:

f[f[n_]] := -n

应用程序:

In[2]:= f[f[10]]                                                                                                                                                                                                                                                                              
Out[2]= -10
In[3]:= f[10]                                                                                                                                                                                                                                                                                 
Out[3]= f[10]

因为这个问题没有说明f(n)的值,所以f[n]仍然没有赋值。

我试着打高尔夫,这是罗德里克·查普曼的回答。

无分支:74个字符

int f(int i){return(-((i&1)<<1)|1)*i-(-((i>>>31)<<1)|1)*(((i|-i)>>31)&1);}

带有分支,Java风格:58个字符

int f(int i){return i==0?0:(((i&1)==0?i:-i)+(i>0?-1:1));}

带分支,C样式:52个字符

int f(int i){return i?(((i&1)?-i:i)+(i>0?-1:1)):0;}

经过快速但有效的基准测试后,分支版本在我的机器上的速度提高了33%。(正数和负数的随机数据集,足够的重复,并防止编译器在预热时优化代码。)考虑到非分支版本中的操作数量以及可能的良好分支预测,这并不奇怪,因为函数被调用了两次:f(f(i))。当我将基准更改为度量:f(I)时,分支版本只快28%。我认为这证明了分支预测在第一种情况下确实有一些好处。更多证明:当使用f(f(f)(f(i)))进行测试时,分支版本的速度会快42%。