我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
利用JavaScript异常。
function f(n) {
try {
return n();
}
catch(e) {
return function() { return -n; };
}
}
f(f(0))=>0f(f(1))=>-1
其他回答
这是一个C/C++解决方案,它不使用任何按位运算符,也不需要任何数学库,尽管这有点作弊。。。
double f(double n)
{
if (n == (double)(int)n)
return n + 0.5;
else
return -(n - 0.5);
}
这适用于所有32位整数,只有一个异常0x80000000(因为它的相反值不能存储在32位整数系统中)。f(f(n))==-n将始终为真,除非在这种情况下。
不过,我相信有一种更简单、更快的方法来实现它。这只是我第一个想到的。
根据微软/谷歌的面试官通常在面试中提出的问题,我认为提问者指的是一种创新、轻量级、简单的解决方案,它将使用按位操作,而不是那些复杂的高级答案。
灵感来自@eipipuz的回答,我编写了这个C++函数(但没有运行它):
int32_t f(int32_t n){
int32_t temp = n & 00111111111111111111111111111111;
x = n >> 30;
x++;
x = x << 30;
return x | temp;
}
它将n的最左边的两位存储在x中,将x加1,然后再次将其替换为n的最左侧的两位。
如果我们继续以另一个f(n)作为参数n运行f(n,则最左边的两个位将如下旋转:
00 --> 01 --> 10 --> 11 --> 00 ...
请注意,最右边的30位不变。8位整数示例:
示例1:
>f(00001111)=01001111>f(01001111)=10001111[这是原始值的负值,00001111]
示例2:
>f(11101010)=00101010>f(00101010)=01101010[这是原始值11101010的负值]
虽然问题说n必须是32位int,但它没有说参数或返回类型必须是32比特int0
private final long MAGIC_BIT=1<<38;
long f(long n) {
return n & MAGIC_BIT != 0 ? -(n & !MAGIC_BIT) : n | MAGIC_BIT;
}
编辑:
这实际上是一个很好的面试问题。最好的答案是难以或不可能回答的,因为它迫使人们仔细思考,你可以观察并寻找:
他们会放弃吗?他们说这很愚蠢吗?他们是否尝试独特的方法?他们在处理问题时是否与您沟通?他们是否要求进一步细化要求?
etc.
永远不要只回答行为问题,除非你有一个非常好的答案。始终保持愉快,并尝试让提问者参与进来。不要沮丧,不要过早放弃!如果你真的一无所获,尝试一些完全非法的、可能奏效的方法,你将获得几乎全部的学分。
C++
struct Value
{
int value;
Value(int v) : value(v) {}
operator int () { return -value; }
};
Value f(Value input)
{
return input;
}
C#重载:
string f(int i) {
return i.ToString();
}
int f(string s) {
return Int32.Parse(s) * -1;
}
Or
object f(object o) {
if (o.ToString.StartsWith("s"))
return Int32.Parse(s.Substring(1)) * -1;
return "s" + i.ToString();
}