我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
好问题!
这花了我大约35秒的时间思考并写下:
int f(int n){
static int originalN=0;
if (n!=0)
originalN=n;
return n-originalN;
}
其他回答
我相信这符合所有要求。没有什么规定参数必须是32位有符号整数,只有你传入的值“n”是。
long long f(long long n)
{
int high_int = n >> 32;
int low_int = n & 0xFFFFFFFF;
if (high_int == 0) {
return 0x100000000LL + low_int;
} else {
return -low_int;
}
}
另一个作弊解决方案。我们使用允许运算符重载的语言。然后我们让f(x)返回重载==的值,以始终返回true。这似乎与问题描述相符,但显然违背了谜题的精神。
Ruby示例:
class Cheat
def ==(n)
true
end
end
def f(n)
Cheat.new
end
这给了我们:
>> f(f(1)) == -1
=> true
而且(不太令人惊讶)
>> f(f(1)) == "hello world"
=> true
另一种利用短路的Javascript解决方案。
function f(n) {return n.inv || {inv:-n}}
f(f(1)) => -1
f(f(-1)) => 1
:D
boolean inner = true;
int f(int input) {
if(inner) {
inner = false;
return input;
} else {
inner = true;
return -input;
}
}
这也是一个解决方案(但我们稍微改变了一下规则):
def f(n):
if isinstance(n,int):
return str(n)
else:
return -int(n)