我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
在awk中,由于几乎没有任何信息被传递,因此必须求助于允许将状态信息作为函数返回的一部分传递的方法,而不会危及传递内容的可用性:
jot - -5 5 | mawk 'function _(__,___) {
return (__~(___=" ")) \
\
? substr("",sub("^[ ]?[+- ]*",\
substr(" -",__~__,index("_"___,___)-\
(__~"[-]")),__))\
(__~"[-]"?"":___)__\
: (+__<-__?___:(___)___)__
} BEGIN { CONVFMT=OFMT="%.17g"
} {
print "orig", +(__=$(__<__))<-__?__:" "__,
"f(n)....", _(__),_(_(__)),_(_(_(__))),
_(_(_(_(__)))), _(_(_(_(_(__)))))
}' |gcat -n | lgp3 5
1 orig -5 f(n).... -5 5 -5 5 -5
2 orig -4 f(n).... -4 4 -4 4 -4
3 orig -3 f(n).... -3 3 -3 3 -3
4 orig -2 f(n).... -2 2 -2 2 -2
5 orig -1 f(n).... -1 1 -1 1 -1
6 orig 0 f(n).... 0 -0 0 -0 0
7 orig 1 f(n).... 1 -1 1 -1 1
8 orig 2 f(n).... 2 -2 2 -2 2
9 orig 3 f(n).... 3 -3 3 -3 3
10 orig 4 f(n).... 4 -4 4 -4 4
11 orig 5 f(n).... 5 -5 5 -5 5
因此,这样做的限制是,只有整数或浮点值已经是字符串格式,可以在没有风险的情况下使用,因为额外的ASCII空间\040作为状态信息
这种方法的优点是
它愿意为您提供“负零”,对于绝对值小于2^53的整数,简单地添加加号,即+f(f(_))函数调用本身将具有隐式代表您完成类型铸造,结果值将再次为数字对于大整数,只需减去()任何前导空格轻松处理大整数,而不会丢失精度从类型转换为双精度浮点
`
1 orig -99999999999999999999999999999999
f(n)....
-99999999999999999999999999999999
99999999999999999999999999999999
-99999999999999999999999999999999
99999999999999999999999999999999
-99999999999999999999999999999999
2 orig -1239999999999999999999999999999
f(n).... -1239999999999999999999999999999
1239999999999999999999999999999
-1239999999999999999999999999999
1239999999999999999999999999999
-1239999999999999999999999999999`
其他回答
除int.MaxValue和int.MinValue以外的工作
public static int f(int x)
{
if (x == 0) return 0;
if ((x % 2) != 0)
return x * -1 + (-1 *x) / (Math.Abs(x));
else
return x - x / (Math.Abs(x));
}
你没说他们期望什么样的语言。。。这是一个静态解决方案(Haskell)。这基本上是在搞乱两个最重要的比特:
f :: Int -> Int
f x | (testBit x 30 /= testBit x 31) = negate $ complementBit x 30
| otherwise = complementBit x 30
在动态语言(Python)中要容易得多。只需检查参数是否为数字X,并返回返回-X的lambda:
def f(x):
if isinstance(x,int):
return (lambda: -x)
else:
return x()
使用复数,您可以有效地将否定数字的任务分为两个步骤:
将n乘以i,得到n*i,n逆时针旋转90°再乘以i,得到-n
最棒的是,您不需要任何特殊的处理代码。只要乘以i就可以了。
但不允许使用复数。因此,您必须使用部分数据范围创建自己的虚拟轴。由于需要的虚(中间)值与初始值一样多,因此只剩下一半的数据范围。
我试图在下图中显示这一点,假设有符号的8位数据。您必须将其缩放为32位整数。初始n的允许范围为-64到+63。下面是函数对正n的作用:
如果n在0..63(初始范围)内,函数调用将添加64,将n映射到范围64..127(中间范围)如果n在64..127(中间范围)内,则函数从64中减去n,将n映射到范围0..-63
对于负n,函数使用中间范围-65..-128。
C#表示2^32-1个数字的范围,所有整数32(int32.MinValue除外)
Func<int, int> f = n =>
n < 0
? (n & (1 << 30)) == (1 << 30) ? (n ^ (1 << 30)) : - (n | (1 << 30))
: (n & (1 << 30)) == (1 << 30) ? -(n ^ (1 << 30)) : (n | (1 << 30));
Console.WriteLine(f(f(Int32.MinValue + 1))); // -2147483648 + 1
for (int i = -3; i <= 3 ; i++)
Console.WriteLine(f(f(i)));
Console.WriteLine(f(f(Int32.MaxValue))); // 2147483647
打印:
2147483647
3
2
1
0
-1
-2
-3
-2147483647
int f(int x){
if (x < 0)
return x;
return ~x+1; //two's complement
}