我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
:D
boolean inner = true;
int f(int input) {
if(inner) {
inner = false;
return input;
} else {
inner = true;
return -input;
}
}
其他回答
以下情况如何:
int f (int n)
{
static bool pass = false;
pass = !pass;
return pass? n : -n;
}
适用于n=[0..2^31-1]
int f(int n) {
if (n & (1 << 31)) // highest bit set?
return -(n & ~(1 << 31)); // return negative of original n
else
return n | (1 << 31); // return n with highest bit set
}
很简单,只需让f返回看起来等于任何整数的值,并且可以从整数转换。
public class Agreeable
{
public static bool operator==(Agreeable c, int n)
{ return true; }
public static bool operator!=(Agreeable c, int n)
{ return false; }
public static implicit operator Agreeable(int n)
{ return new Agreeable(); }
}
class Program
{
public static Agreeable f(Agreeable c)
{ return c; }
static void Main(string[] args)
{
Debug.Assert(f(f(0)) == 0);
Debug.Assert(f(f(5)) == -5);
Debug.Assert(f(f(-5)) == 5);
Debug.Assert(f(f(int.MaxValue)) == -int.MaxValue);
}
}
int func(int a)
{
static int p = 0;
int ret = a;
if ( p ) ret *= -1;
p ^= 1;
return ret;
}
f(n) { return -1 * abs(n) }
如何处理溢出问题?还是我错过了重点?