我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

这个想法已经在其他答案中使用过,但我把它融入了Python的一行:

def f(n):
    return str(n) if type(n) == int else -int(n)

其他回答

Lua:

function f(n)
    if type(n) == "number" then
        return (-number) .. ""
    else
        return number + 0
    end
end

我承认我会作弊,但还是符合要求。这是编程魔术,而不是数学。它适用于整个范围,-2^31除外。

int f(int n)
{
    static bool eFlag = false; // Only executed once
    eFlag = !eFlag;
    return eFlag?-n:n;
}

下面是一个简短的Python答案:

def f(n):
  m = -n if n % 2 == 0 else n
  return m + sign(n)

一般情况

稍微调整一下上面的内容就可以处理我们希望k个自调用否定输入的情况——例如,如果k=3,这意味着g(g(g)n))=-n:

def g(n):
  if n % k: return n + sign(n)
  return -n + (k - 1) * sign(n)

这是通过将0保留在适当位置并创建长度为2*k的循环来实现的,因此,在任何循环中,n和-n之间的距离为k。具体来说,每个周期如下:

N * k + 1, N * k + 2, ... , N * k + (k - 1), - N * k - 1, ... , - N * k - (k - 1)

或者,为了更容易理解,这里是k=3的示例循环:

1, 2, 3, -1, -2, -3
4, 5, 6, -4, -5, -6

这组循环最大化了在任何以零为中心的机器类型(如有符号int32或有符号int64类型)内工作的输入范围。

兼容范围分析

映射x->f(x)实际上必须形成长度为2*k的循环,其中x=0是特殊情况下的1-长度循环,因为-0=0。因此,一般k的问题是可解的,当且仅当输入-1(补偿0)的范围是2*k的倍数,并且正负范围是相反的。

对于有符号整数表示,我们总是有一个最小的负数,在该范围内没有正的对应项,因此该问题在整个范围内变得不可解决。例如,有符号字符的范围为[-128127],因此在给定范围内f(f(-128))=128是不可能的。

另一种方法是将状态保持在一位,并在负数的情况下翻转它,注意二进制表示。。。限制为2^29

整数ffn(整数n){

    n = n ^ (1 << 30); //flip the bit
    if (n>0)// if negative then there's a two's complement
    {
        if (n & (1<<30))
        {
            return n;
        }
        else
        {
            return -n;
        }
    }
    else
    {
        if (n & (1<<30))
        {
            return -n;
        }
        else
        {
            return n;
        }
    }


}

怎么样:

f(n) = sign(n) - (-1)ⁿ * n

在Python中:

def f(n): 
    if n == 0: return 0
    if n >= 0:
        if n % 2 == 1: 
            return n + 1
        else: 
            return -1 * (n - 1)
    else:
        if n % 2 == 1:
            return n - 1
        else:
            return -1 * (n + 1)

Python自动将整数提升为任意长度的longs。在其他语言中,最大的正整数将溢出,因此它将适用于除该整数之外的所有整数。


为了使其适用于实数,您需要替换(-1)中的nⁿ 如果n>0,则为{上限(n);如果n<0},则为下限(n)。

在C#中(适用于任何双精度,溢出情况除外):

static double F(double n)
{
    if (n == 0) return 0;
    
    if (n < 0)
        return ((long)Math.Ceiling(n) % 2 == 0) ? (n + 1) : (-1 * (n - 1));
    else
        return ((long)Math.Floor(n) % 2 == 0) ? (n - 1) : (-1 * (n + 1));
}