我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
这是一个C/C++解决方案,它不使用任何按位运算符,也不需要任何数学库,尽管这有点作弊。。。
double f(double n)
{
if (n == (double)(int)n)
return n + 0.5;
else
return -(n - 0.5);
}
这适用于所有32位整数,只有一个异常0x80000000(因为它的相反值不能存储在32位整数系统中)。f(f(n))==-n将始终为真,除非在这种情况下。
不过,我相信有一种更简单、更快的方法来实现它。这只是我第一个想到的。
其他回答
这很简单!
每个数字以4为周期映射到另一个数字,其中所需条件成立。
例子:
规则如下:
0→ 0±2³¹ → ±2³¹古怪的→ 甚至,甚至→ -奇数:对于所有k,0<k<2³⁰: (2k-1)→ (2k)→ (-2k+1)→ (-2k)→ (2k-1)
唯一不匹配的值是±(2³¹-1),因为只有两个。必须有两个不能匹配,因为在二进制补码系统中只有四个数字的倍数,其中0和±2³¹已被保留。
在一的补码系统中,存在+0和-0。我们开始了:
对于所有k,0<k<2³⁰: (+2k)→ (+2k+1)→ (-2k)→ (-2k-1)→ (+2k)
int f(int n) {
return ((n>0)? -1 : 1) * abs(n);
}
没有人说它必须是无国籍的。
int32 f(int32 x) {
static bool idempotent = false;
if (!idempotent) {
idempotent = true;
return -x;
} else {
return x;
}
}
作弊,但不如很多例子。更糟糕的是,查看堆栈以查看调用者的地址是否为-f,但这将更具可移植性(虽然不是线程安全的……线程安全版本将使用TLS)。更邪恶的是:
int32 f (int32 x) {
static int32 answer = -x;
return answer;
}
当然,对于MIN_INT32的情况,这两种方法都不太有效,但除非允许返回更宽的类型,否则对此您几乎无能为力。
将n转换为符号和幅度表示;添加范围的1/4;转换回。
#define STYPE int
STYPE sign_bit = (unsigned STYPE) 1 << ( sizeof ( STYPE ) * 8 - 1 );
STYPE f ( STYPE f )
{
unsigned STYPE smf = f > 0 ? f : -f | sign_bit;
smf += sign_bit >> 1;
return smf & sign_bit ? -( smf & ~sign_bit ) : smf;
}
本质上,函数必须将可用范围划分为大小为4的循环,其中-n位于n循环的另一端。但是,0必须是大小为1的循环的一部分,否则0->x->0->x!=-x.因为0是单独的,所以在我们的范围内必须有3个其他值(其大小是4的倍数)不在具有4个元素的正确循环中。
我选择这些额外的奇怪值为MIN_INT、MAX_INT和MIN_INT+1。此外,MIN_INT+1将正确映射到MAX_INT,但会被卡在那里而不能映射回来。我认为这是最好的妥协,因为它有一个很好的特性,即只有极端值不能正常工作。此外,这意味着它将适用于所有BigInt。
int f(int n):
if n == 0 or n == MIN_INT or n == MAX_INT: return n
return ((Math.abs(n) mod 2) * 2 - 1) * n + Math.sign(n)