我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

这是一个C/C++解决方案,它不使用任何按位运算符,也不需要任何数学库,尽管这有点作弊。。。

double f(double n)
{
    if (n == (double)(int)n)
        return n + 0.5;
    else
        return -(n - 0.5);
}

这适用于所有32位整数,只有一个异常0x80000000(因为它的相反值不能存储在32位整数系统中)。f(f(n))==-n将始终为真,除非在这种情况下。

不过,我相信有一种更简单、更快的方法来实现它。这只是我第一个想到的。

其他回答

你没说他们期望什么样的语言。。。这是一个静态解决方案(Haskell)。这基本上是在搞乱两个最重要的比特:

f :: Int -> Int
f x | (testBit x 30 /= testBit x 31) = negate $ complementBit x 30
    | otherwise = complementBit x 30

在动态语言(Python)中要容易得多。只需检查参数是否为数字X,并返回返回-X的lambda:

def f(x):
   if isinstance(x,int):
      return (lambda: -x)
   else:
      return x()

少于50个字符(C#)

int f(int n) { return (n <= 0) ? n : f(-n); }

或更容易阅读:

static int f(int n) { 
  if (n <= 0)
    return n;
  else 
    return f(-n);
}

要测试

static void Main(string[] args) {
    for (int n = int.MinValue; n < int.MaxValue; n+=1) {
        Console.Out.WriteLine("Value: " + n + " Result: " + f(f(n)));
    }
}

它有效(假设我正确理解问题)

创建许多解的一种方法是注意,如果我们将整数划分为两个集合S和R

那么我们可以如下创建f:

如果x在R中,则f(x)=g(x)

如果x在S中,则f(x)=-invg(x)

其中invg(g(x))=x,所以invg是g的逆函数。

上面提到的第一个解决方案是分区R=偶数,R=奇数,g(x)=x+1。

我们可以取任意两个无限集合T,P s.T T+U=整数集合,取s=T+(-T),R=U+(-U)。

然后-S=S和-R=R通过它们的定义,我们可以将g取为从S到R的任何1-1对应关系,这必须存在,因为这两个集合都是无限的和可数的。

因此,这将为我们提供许多解决方案,但并非所有解决方案都可以编程,因为它们不会被有限地定义。

例如:

R=可被3整除的数字,S=不可被3除的数字。

然后我们取g(6r)=3r+1,g(6r+3)=3r+2。

Python 2.6:

f = lambda n: (n % 2 * n or -n) + (n > 0) - (n < 0)

我意识到这对讨论毫无帮助,但我无法抗拒。

int f(int n)
{
  static long counter=0;
  counter++;
  if(counter%2==0)
    return -n;
  else
    return n;
}