我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

int f(int n)
{
  static long counter=0;
  counter++;
  if(counter%2==0)
    return -n;
  else
    return n;
}

其他回答

类似于python中的函数重载解决方案:

def f(number):
 if type(number) != type([]):
  return [].append(number)
 else:
  return -1*number[0]

备选方案:静态数据成员

由于C++中的重载:

double f(int var)
{
 return double(var);
} 

int f(double var)
{
 return -int(var);
}

int main(){
int n(42);
std::cout<<f(f(n));
}

这个问题并没有说明函数f的输入类型和返回值必须是什么(至少不是你给出的方式)。。。

…只是当n是32位整数时,f(f(n))=-n

那么,怎么样

Int64 f(Int64 n)
{
    return(n > Int32.MaxValue ? 
        -(n - 4L * Int32.MaxValue):
        n + 4L * Int32.MaxValue);
}

如果n是32位整数,则语句f(f(n))==-n将为真。

显然,这种方法可以扩展到更大范围的数字。。。

int f(const int n)  {
    static int last_n;

    if (n == 0)
        return 0;
    else if (n == last_n)
        return -n;
    else
    {
        last_n = n;
        return n;
    }
}

哈克,但正确。

根据您的平台,某些语言允许您在函数中保持状态。VB.Net,例如:

Function f(ByVal n As Integer) As Integer
    Static flag As Integer = -1
    flag *= -1

    Return n * flag
End Function

IIRC、C++也允许这样做。我怀疑他们正在寻找不同的解决方案。

另一个想法是,由于它们没有定义函数第一次调用的结果,因此可以使用奇数/均匀度来控制是否反转符号:

int f(int n)
{
   int sign = n>=0?1:-1;
   if (abs(n)%2 == 0)
      return ((abs(n)+1)*sign * -1;
   else
      return (abs(n)-1)*sign;
}

所有偶数的幅度加一,所有奇数的幅度减一。两次调用的结果大小相同,但在一次调用中,我们甚至交换了符号。在某些情况下,这不会起作用(-1,max或min int),但它的效果比迄今为止任何其他建议都要好得多。