我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
int f(const int n) {
static int last_n;
if (n == 0)
return 0;
else if (n == last_n)
return -n;
else
{
last_n = n;
return n;
}
}
哈克,但正确。
其他回答
嗯,我既不是数学,也不是编程高手,但这不是很容易吗?
int f(int i) {
static bool b;
if (b) {
b = !b;
return i;
} else {
b = !b;
return -i;
}
}
用大小正值和负值INT_MIN、INT_MAX进行测试,似乎可以。。。如果这是一个问题,可以使线程安全,但这不是任务的一部分。
或者我错过了什么?
这里有一个解决方案,其灵感来自于不能使用复数来解决这个问题的要求或声明。
乘以-1的平方根是一个想法,但似乎失败了,因为-1没有整数的平方根。但是,使用mathematica这样的程序可以得出如下公式
(18494364652+1)模(232-3)=0。
这几乎和平方根为-1一样好。函数的结果必须是有符号整数。因此,我将使用一个修改的模运算mods(x,n),它返回与x模n最接近0的整数y。只有极少数编程语言能够成功地进行模运算,但它很容易被定义。例如,在python中,它是:
def mods(x, n):
y = x % n
if y > n/2: y-= n
return y
使用上面的公式,问题现在可以解决为
def f(x):
return mods(x*1849436465, 2**32-3)
对于[-231-2231-2]范围内的所有整数,这满足f(f(x))=-x。f(x)的结果也在这个范围内,但当然计算需要64位整数。
这个问题并没有说明函数f的输入类型和返回值必须是什么(至少不是你给出的方式)。。。
…只是当n是32位整数时,f(f(n))=-n
那么,怎么样
Int64 f(Int64 n)
{
return(n > Int32.MaxValue ?
-(n - 4L * Int32.MaxValue):
n + 4L * Int32.MaxValue);
}
如果n是32位整数,则语句f(f(n))==-n将为真。
显然,这种方法可以扩展到更大范围的数字。。。
return x ^ ((x%2) ? 1 : -INT_MAX);
使用复数,您可以有效地将否定数字的任务分为两个步骤:
将n乘以i,得到n*i,n逆时针旋转90°再乘以i,得到-n
最棒的是,您不需要任何特殊的处理代码。只要乘以i就可以了。
但不允许使用复数。因此,您必须使用部分数据范围创建自己的虚拟轴。由于需要的虚(中间)值与初始值一样多,因此只剩下一半的数据范围。
我试图在下图中显示这一点,假设有符号的8位数据。您必须将其缩放为32位整数。初始n的允许范围为-64到+63。下面是函数对正n的作用:
如果n在0..63(初始范围)内,函数调用将添加64,将n映射到范围64..127(中间范围)如果n在64..127(中间范围)内,则函数从64中减去n,将n映射到范围0..-63
对于负n,函数使用中间范围-65..-128。