我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
从来没有人说过f(x)必须是同一类型。
def f(x):
if type(x) == list:
return -x[0]
return [x]
f(2) => [2]
f(f(2)) => -2
其他回答
int f(int n)
{
static long counter=0;
counter++;
if(counter%2==0)
return -n;
else
return n;
}
int f( int n ){
return n==0?0:(n&1?n:-n)+(n<0?-1:1);
}
f#中的简单解决方案(不使用“技巧”)
let rec f n =
if n = 0 then 0
elif n > 0 then
if (f (n - 1) <> n) then n + 1
else -(n - 1)
else
if (f (-(n - 1)) = n) then n - 1
else -(n + 1)
记住你的上一个状态不是一个足够好的答案吗?
int f (int n)
{
//if count
static int count = 0;
if (count == 0)
{
count = 1;
return n;
}
if (n == 0)
return 0;
else if (n > 0)
{
count = 0;
return abs(n)*(-1);
}
else
{
count = 0;
return abs(n);
}
}
int main()
{
int n = 42;
std::cout << f(f(n))
}
上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。
红宝石:
def f( n )
return 0 unless n != 0
( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end