我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

在C中,

int 
f(int n) {
     static int r = 0;
     if (r == 1) {r--; return -1 * n; };
     r++;
     return n;
}

知道这是为了什么语言会有帮助。我错过了什么吗?许多“解决方案”似乎过于复杂,坦率地说,并非如此工作(当我读到问题时)。

其他回答

Wolfram语言的解决方案:

f[f[n_]] := -n

应用程序:

In[2]:= f[f[10]]                                                                                                                                                                                                                                                                              
Out[2]= -10
In[3]:= f[10]                                                                                                                                                                                                                                                                                 
Out[3]= f[10]

因为这个问题没有说明f(n)的值,所以f[n]仍然没有赋值。

很简单,只需让f返回看起来等于任何整数的值,并且可以从整数转换。

public class Agreeable
{
    public static bool operator==(Agreeable c, int n)
        { return true; }

    public static bool operator!=(Agreeable c, int n)
        { return false; }

    public static implicit operator Agreeable(int n)
        { return new Agreeable(); }
}

class Program
{
    public static Agreeable f(Agreeable c)
        { return c; }

    static void Main(string[] args)
    {
        Debug.Assert(f(f(0)) == 0);
        Debug.Assert(f(f(5)) == -5);
        Debug.Assert(f(f(-5)) == 5);
        Debug.Assert(f(f(int.MaxValue)) == -int.MaxValue);
    }
}

Clojure解决方案:

(defmacro f [n]
  (if (list? n) `(- ~n) n))

也适用于任何大小的正整数和负整数、双整数和比率!

int j = 0;

void int f(int n)
{    
    j++;

    if(j==2)
    {
       j = 0;
       return -n;
    }

    return n;
}

:D

本质上,函数必须将可用范围划分为大小为4的循环,其中-n位于n循环的另一端。但是,0必须是大小为1的循环的一部分,否则0->x->0->x!=-x.因为0是单独的,所以在我们的范围内必须有3个其他值(其大小是4的倍数)不在具有4个元素的正确循环中。

我选择这些额外的奇怪值为MIN_INT、MAX_INT和MIN_INT+1。此外,MIN_INT+1将正确映射到MAX_INT,但会被卡在那里而不能映射回来。我认为这是最好的妥协,因为它有一个很好的特性,即只有极端值不能正常工作。此外,这意味着它将适用于所有BigInt。

int f(int n):
    if n == 0 or n == MIN_INT or n == MAX_INT: return n
    return ((Math.abs(n) mod 2) * 2 - 1) * n + Math.sign(n)