我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

怎么样:

f(n) = sign(n) - (-1)ⁿ * n

在Python中:

def f(n): 
    if n == 0: return 0
    if n >= 0:
        if n % 2 == 1: 
            return n + 1
        else: 
            return -1 * (n - 1)
    else:
        if n % 2 == 1:
            return n - 1
        else:
            return -1 * (n + 1)

Python自动将整数提升为任意长度的longs。在其他语言中,最大的正整数将溢出,因此它将适用于除该整数之外的所有整数。


为了使其适用于实数,您需要替换(-1)中的nⁿ 如果n>0,则为{上限(n);如果n<0},则为下限(n)。

在C#中(适用于任何双精度,溢出情况除外):

static double F(double n)
{
    if (n == 0) return 0;
    
    if (n < 0)
        return ((long)Math.Ceiling(n) % 2 == 0) ? (n + 1) : (-1 * (n - 1));
    else
        return ((long)Math.Floor(n) % 2 == 0) ? (n - 1) : (-1 * (n + 1));
}

其他回答

对于所有32位值(注意,-0是-2147483648)

int rotate(int x)
{
    static const int split = INT_MAX / 2 + 1;
    static const int negativeSplit = INT_MIN / 2 + 1;

    if (x == INT_MAX)
        return INT_MIN;
    if (x == INT_MIN)
        return x + 1;

    if (x >= split)
        return x + 1 - INT_MIN;
    if (x >= 0)
        return INT_MAX - x;
    if (x >= negativeSplit)
        return INT_MIN - x + 1;
    return split -(negativeSplit - x);
}

基本上需要将每个-x=>x=>-x循环与y=>-y=>y循环配对。所以我把裂口的两边配对。

例如,对于4位整数:

0 => 7 => -8 => -7 => 0
1 => 6 => -1 => -6 => 1
2 => 5 => -2 => -5 => 2
3 => 4 => -3 => -4 => 3

这是一个C/C++解决方案,它不使用任何按位运算符,也不需要任何数学库,尽管这有点作弊。。。

double f(double n)
{
    if (n == (double)(int)n)
        return n + 0.5;
    else
        return -(n - 0.5);
}

这适用于所有32位整数,只有一个异常0x80000000(因为它的相反值不能存储在32位整数系统中)。f(f(n))==-n将始终为真,除非在这种情况下。

不过,我相信有一种更简单、更快的方法来实现它。这只是我第一个想到的。

f(n) { return -1 * abs(n) }

如何处理溢出问题?还是我错过了重点?

怎么样

int f(int n)
{
    return -abs(n);
}

C++

struct Value
{
  int value;
  Value(int v) : value(v) {}
  operator int () { return -value; }
};


Value f(Value input)
{
  return input;
}