我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
这个Perl解决方案适用于整数、浮点数和字符串。
sub f {
my $n = shift;
return ref($n) ? -$$n : \$n;
}
尝试一些测试数据。
print $_, ' ', f(f($_)), "\n" for -2, 0, 1, 1.1, -3.3, 'foo' '-bar';
输出:
-2 2
0 0
1 -1
1.1 -1.1
-3.3 3.3
foo -foo
-bar +bar
其他回答
或者,您可以滥用预处理器:
#define f(n) (f##n)
#define ff(n) -n
int main()
{
int n = -42;
cout << "f(f(" << n << ")) = " << f(f(n)) << endl;
}
我认为这些问题的答案最好用图表直观地解释。当我们忽略零时,我们可以将整数分成4个数的小集合:
1 → 2 3 → 4 5 → 6
↑ ↓ ↑ ↓ ↑ ↓ ...
-2 ← -1 -4 ← -3 -6 ← -5
这很容易翻译成代码。注意,偶数改变符号,奇数增加或减少1。在C#中,它看起来像这样:
public static int f(int x)
{
if(x == 0)
return 0;
if(x > 0)
return (x % 2 == 0) ? -x+1 : x+1;
// we know x is negative at this point
return (x % 2 == 0) ? -x-1 : x-1;
}
当然,您可以通过使用巧妙的技巧来缩短此方法,但我认为这段代码最好地解释了它本身。
然后是范围。32位整数的范围从-2^31到2^31-1。数字2^31-1、-2^31-1和-2^31超出了f(x)的范围,因为缺少数字2^31。
void f(int x)
{
Console.WriteLine(string.Format("f(f({0})) == -{0}",x));
}
抱歉,伙计们。。。这太诱人了;)
上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。
红宝石:
def f( n )
return 0 unless n != 0
( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end
我还没有看其他答案,我假设已经彻底讨论了按位技术。
我想我会在C++中想出一些邪恶的东西,希望不会上当受骗:
struct ImplicitlyConvertibleToInt
{
operator int () const { return 0; }
};
int f(const ImplicitlyConvertibleToInt &) { return 0; }
ImplicitlyConvertibleToInt f(int & n)
{
n = 0; // The problem specification didn't say n was const
return ImplicitlyConvertibleToInt();
}
整个ImplicitlyConvertableToInt类型和重载是必需的,因为临时变量不能绑定到非常量引用。
当然,现在来看它,f(n)是否在-n之前执行是不确定的。
对于这种程度的邪恶,也许一个更好的解决方案是:
struct ComparesTrueToInt
{
ComparesTrueToInt(int) { } // implicit construction from int
};
bool operator == (ComparesTrueToInt, int) const { return true; }
ComparesTrueToInt f(ComparesTrueToInt ct) { return ComparesTrueToInt(); }