我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
我承认我会作弊,但还是符合要求。这是编程魔术,而不是数学。它适用于整个范围,-2^31除外。
int f(int n)
{
static bool eFlag = false; // Only executed once
eFlag = !eFlag;
return eFlag?-n:n;
}
其他回答
int f(int n) {
return ((n>0)? -1 : 1) * abs(n);
}
也许是作弊?(python)
def f(n):
if isinstance(n, list):
return -n[0]
else:
return [n,0]
n = 4
print f(f(n))
--output--
-4
我参加这个聚会迟到了,现在可能是墓地了。但我有两个贡献,灵感来自viraptor先前使用lambda的Python答案。读者可能认为该解决方案仅在非类型化语言中可行,而在类型化语言中将需要一些明确的额外标记。
但下面是Haskell中的解决方案1(我不是Haskell专家)。它有点作弊,因为从技术上讲,两个f是两个不同的实现。(一个f::Int->()->Int,另一个f::(()->Int)->Int)
{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FunctionalDependencies #-}
module Main where
class Tran σ τ | σ -> τ where
tran :: σ -> τ
instance Tran Int (() -> Int) where
tran n = \_ -> (-n)
instance Tran (() -> Int) Int where
tran g = g ()
f :: Tran σ τ => σ -> τ
f = tran
main :: IO ()
main = do
print $ f (f (42 :: Int)) -- --> -42
print $ f (f (0 :: Int)) -- --> 0
print $ f (f (-69 :: Int)) -- --> 69
接下来是Typed Racket中的解决方案2。这一个满足了最大可能域的属性,因为Racket中的Number最多包含复数:
#lang typed/racket
(: f (case->
[Number -> (-> Number)]
[(-> Number) -> Number]))
(define (f x)
(if (number? x) (λ () (- x)) (x)))
(f (f 42)) ; --> -42
(f (f 0)) ; --> 0
(f (f -69)) ; --> 69
(f (f 3/4)) ; --> -3/4
(f (f 8+7i)) ; --> -8-7i
在PHP中
function f($n) {
if(is_int($n)) {
return (string)$n;
}
else {
return (int)$n * (-1);
}
}
我相信你能理解其他语言的这种方法的精神。为了让不使用弱类型语言的人更清楚,我明确地将其转换回int。对于某些语言,您必须重载该函数。
这个解决方案的妙处在于,无论您是从字符串还是整数开始,它都是有效的,并且在返回f(n)时不会明显改变任何内容。
在我看来,面试官在问,“这位应聘者是否知道如何标记数据以供以后操作”,以及“这位应聘人员是否知道如何在最少更改数据的情况下标记数据?”你可以使用双精度、字符串或任何其他你想使用的数据类型来实现这一点。
我认为最大的可能范围是暗示模块化算术解决方案。在一些模基M中,有一个数,当平方等于M-1(等于-1)。例如,如果M=13,5*5=25,25 mod 13=12(=-1)总之,这里有一些M=2**32-3的python代码。
def f(x):
m=2**32-3;
halfm=m//2;
i_mod_m=1849436465
if abs( x ) >halfm:
raise "too big"
if x<0:
x+=m
x=(i_mod_m*x) % m
if (x>halfm):
x-=m
return x;
注意,有3个值不适用于2**31-1、-(2**31-1)和-(2*#31)